Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
New Phytol ; 241(3): 1193-1209, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009929

ABSTRACT

The Arabidopsis thaliana transcription factor BRANCHED1 (BRC1) plays a pivotal role in the control of shoot branching as it integrates environmental and endogenous signals that influence axillary bud growth. Despite its remarkable activity as a growth inhibitor, the mechanisms by which BRC1 promotes bud dormancy are largely unknown. We determined the genome-wide BRC1 binding sites in vivo and combined these with transcriptomic data and gene co-expression analyses to identify bona fide BRC1 direct targets. Next, we integrated multi-omics data to infer the BRC1 gene regulatory network (GRN) and used graph theory techniques to find network motifs that control the GRN dynamics. We generated an open online tool to interrogate this network. A group of BRC1 target genes encoding transcription factors (BTFs) orchestrate this intricate transcriptional network enriched in abscisic acid-related components. Promoter::ß-GLUCURONIDASE transgenic lines confirmed that BTFs are expressed in axillary buds. Transient co-expression assays and studies in planta using mutant lines validated the role of BTFs in modulating the GRN and promoting bud dormancy. This knowledge provides access to the developmental mechanisms that regulate shoot branching and helps identify candidate genes to use as tools to adapt plant architecture and crop production to ever-changing environmental conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Regulatory Networks , Transcription Factors/genetics , Transcription Factors/metabolism , Promoter Regions, Genetic , Gene Expression Regulation, Plant , Plant Shoots/metabolism
2.
Commun Biol ; 6(1): 840, 2023 08 12.
Article in English | MEDLINE | ID: mdl-37573467

ABSTRACT

Using a fluorescence complementation assay, Delivered Complementation in Planta (DCIP), we demonstrate cell-penetrating peptide-mediated cytosolic delivery of peptides and recombinant proteins in Nicotiana benthamiana. We show that DCIP enables quantitative measurement of protein delivery efficiency and enables functional screening of cell-penetrating peptides for in-planta protein delivery. Finally, we demonstrate that DCIP detects cell-penetrating peptide-mediated delivery of recombinantly expressed proteins such as mCherry and Lifeact into intact leaves. We also demonstrate delivery of a recombinant plant transcription factor, WUSCHEL (AtWUS), into N. benthamiana. RT-qPCR analysis of AtWUS delivery in Arabidopsis seedlings also suggests delivered WUS can recapitulate transcriptional changes induced by overexpression of AtWUS. Taken together, our findings demonstrate that DCIP offers a new and powerful tool for interrogating cytosolic delivery of proteins in plants and highlights future avenues for engineering plant physiology.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell-Penetrating Peptides , Cell-Penetrating Peptides/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Fluorescence , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
3.
Plant Sci ; 324: 111421, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35995111

ABSTRACT

Gravitropism is a finely regulated tropistic response based on the plant perception of directional cues. Such perception allows them to direct shoot growth upwards, above ground, and root growth downwards, into the soil, anchoring the plant to acquire water and nutrients. Gravity sensing occurs in specialized cells and depends on auxin distribution, regulated by influx/efflux carriers. Here we report that AtHB40, encoding a transcription factor of the homeodomain-leucine zipper I family, was expressed in the columella and the root tip. Athb40 mutants exhibited longer primary roots. Enhanced primary root elongation was in agreement with a higher number of cells in the transition zone and the induction of CYCLINB transcript levels. Moreover, athb40 mutants and AtHB40 overexpressors displayed enhanced and delayed gravitropistic responses, respectively. These phenotypes were associated with altered auxin distribution and deregulated expression of the auxin transporters LAX2, LAX3, and PIN2. Accordingly, lax2 and lax3 mutants also showed an altered gravitropistic response, and LAX3 was identified as a direct target of AtHB40. Furthermore, AtHB40 is induced by AtHB53 when the latter is upregulated by auxin. Altogether, these results indicate that AtHB40 modulates cell division and auxin distribution in the root tip thus altering primary root length and gravitropism.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gravitropism/genetics , Indoleacetic Acids/metabolism , Membrane Transport Proteins/metabolism , Plant Roots/metabolism , Plants/metabolism , Soil , Transcription Factors/metabolism , Water/metabolism
4.
Front Plant Sci ; 13: 803441, 2022.
Article in English | MEDLINE | ID: mdl-35251080

ABSTRACT

As sessile organisms, plants must adapt to a changing environment, sensing variations in resource availability and modifying their development in response. Light is one of the most important resources for plants, and its perception by sensory photoreceptors (e.g., phytochromes) and subsequent transduction into long-term transcriptional reprogramming have been well characterized. Chromatin changes have been shown to be involved in photomorphogenesis. However, the initial short-term transcriptional changes produced by light and what factors enable these rapid changes are not well studied. Here, we define rapidly light-responsive, Phytochrome Interacting Factor (PIF) direct-target genes (LRP-DTGs). We found that a majority of these genes also show rapid changes in Histone 3 Lysine-9 acetylation (H3K9ac) in response to the light signal. Detailed time-course analysis of transcript and chromatin changes showed that, for light-repressed genes, H3K9 deacetylation parallels light-triggered transcriptional repression, while for light-induced genes, H3K9 acetylation appeared to somewhat precede light-activated transcript accumulation. However, direct, real-time imaging of transcript elongation in the nucleus revealed that, in fact, transcriptional induction actually parallels H3K9 acetylation. Collectively, the data raise the possibility that light-induced transcriptional and chromatin-remodeling processes are mechanistically intertwined. Histone modifying proteins involved in long term light responses do not seem to have a role in this fast response, indicating that different factors might act at different stages of the light response. This work not only advances our understanding of plant responses to light, but also unveils a system in which rapid chromatin changes in reaction to an external signal can be studied under natural conditions.

6.
Nat Nanotechnol ; 17(2): 197-205, 2022 02.
Article in English | MEDLINE | ID: mdl-34811553

ABSTRACT

Rapidly growing interest in the nanoparticle-mediated delivery of DNA and RNA to plants requires a better understanding of how nanoparticles and their cargoes translocate in plant tissues and into plant cells. However, little is known about how the size and shape of nanoparticles influence transport in plants and the delivery efficiency of their cargoes, limiting the development of nanotechnology in plant systems. In this study we employed non-biolistically delivered DNA-modified gold nanoparticles (AuNPs) of various sizes (5-20 nm) and shapes (spheres and rods) to systematically investigate their transport following infiltration into Nicotiana benthamiana leaves. Generally, smaller AuNPs demonstrated more rapid, higher and longer-lasting levels of association with plant cell walls compared with larger AuNPs. We observed internalization of rod-shaped but not spherical AuNPs into plant cells, yet, surprisingly, 10 nm spherical AuNPs functionalized with small-interfering RNA (siRNA) were the most efficient at siRNA delivery and inducing gene silencing in mature plant leaves. These results indicate the importance of nanoparticle size in efficient biomolecule delivery and, counterintuitively, demonstrate that efficient cargo delivery is possible and potentially optimal in the absence of nanoparticle cellular internalization. Overall, our results highlight nanoparticle features of importance for transport within plant tissues, providing a mechanistic overview of how nanoparticles can be designed to achieve efficacious biocargo delivery for future developments in plant nanobiotechnology.


Subject(s)
DNA/pharmacology , Metal Nanoparticles/chemistry , Nicotiana/genetics , RNA, Small Interfering/genetics , DNA/chemistry , Gene Silencing , Gene Transfer Techniques , Gold/chemistry , Gold/pharmacology , Plant Leaves/genetics , Plant Leaves/growth & development , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacology , Nicotiana/growth & development
7.
ACS Nano ; 16(2): 1802-1812, 2022 02 22.
Article in English | MEDLINE | ID: mdl-34935350

ABSTRACT

Nanomaterials have emerged as an invaluable tool for the delivery of biomolecules such as DNA and RNA, with various applications in genetic engineering and post-transcriptional genetic manipulation. Alongside this development, there has been an increasing use of polymer-based techniques, such as polyethylenimine (PEI), to electrostatically load polynucleotide cargoes onto nanomaterial carriers. However, there remains a need to assess nanomaterial properties, conjugation conditions, and biocompatibility of these nanomaterial-polymer constructs, particularly for use in plant systems. In this work, we develop mechanisms to optimize DNA loading on single-walled carbon nanotubes (SWNTs) with a library of polymer-SWNT constructs and assess DNA loading ability, polydispersity, and both chemical and colloidal stability. Counterintuitively, we demonstrate that polymer hydrolysis from nanomaterial surfaces can occur depending on polymer properties and attachment chemistries, and we describe mitigation strategies against construct degradation. Given the growing interest in delivery applications in plant systems, we also assess the stress response of plants to polymer-based nanomaterials and provide recommendations for future design of nanomaterial-based polynucleotide delivery strategies.


Subject(s)
Nanotubes, Carbon , DNA , Nanotubes, Carbon/chemistry , Polyethyleneimine/chemistry , Polymers/chemistry , RNA
8.
J Nanobiotechnology ; 19(1): 431, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34930290

ABSTRACT

BACKGROUND: Agriculture faces significant global challenges including climate change and an increasing food demand due to a growing population. Addressing these challenges will require the adoption of transformative innovations into biotechnology practice, such as nanotechnology. Recently, nanomaterials have emerged as unmatched tools for their use as biosensors, or as biomolecule delivery vehicles. Despite their increasingly prolific use, plant-nanomaterial interactions remain poorly characterized, drawing into question the breadth of their utility and their broader environmental compatibility. RESULTS: Herein, we characterize the response of Arabidopsis thaliana to single walled carbon nanotube (SWNT) exposure with two different surface chemistries commonly used for biosensing and nucleic acid delivery: oligonucleotide adsorbed-pristine SWNTs, and polyethyleneimine-SWNTs loaded with plasmid DNA (PEI-SWNTs), both introduced by leaf infiltration. We observed that pristine SWNTs elicit a mild stress response almost undistinguishable from the infiltration process, indicating that these nanomaterials are well-tolerated by the plant. However, PEI-SWNTs induce a much larger transcriptional reprogramming that involves stress, immunity, and senescence responses. PEI-SWNT-induced transcriptional profile is very similar to that of mutant plants displaying a constitutive immune response or treated with stress-priming agrochemicals. We selected molecular markers from our transcriptomic analysis and identified PEI as the main cause of this adverse reaction. We show that PEI-SWNT response is concentration-dependent and, when persistent over time, leads to cell death. We probed a panel of PEI variant-functionalized SWNTs across two plant species and identified biocompatible SWNT surface functionalizations. CONCLUSIONS: While SWNTs themselves are well tolerated by plants, SWNTs surface-functionalized with positively charged polymers become toxic and produce cell death. We use molecular markers to identify more biocompatible SWNT formulations. Our results highlight the importance of nanoparticle surface chemistry on their biocompatibility and will facilitate the use of functionalized nanomaterials for agricultural improvement.


Subject(s)
Arabidopsis/metabolism , Biocompatible Materials/chemistry , Nanotubes, Carbon/chemistry , Arabidopsis/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Biocompatible Materials/metabolism , Biocompatible Materials/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Plant Leaves/chemistry , Plant Leaves/drug effects , Plant Leaves/metabolism , Plasmids/genetics , Plasmids/metabolism , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , RNA/chemistry , RNA/metabolism , Sodium-Hydrogen Exchangers/genetics , Sodium-Hydrogen Exchangers/metabolism , Surface Properties , Transcriptome/drug effects
9.
ACS Synth Biol ; 10(10): 2763-2766, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34520169

ABSTRACT

Plant synthetic biology requires precise characterization of genetic elements to construct complex genetic circuits that can improve plant traits or confer them with new characteristics. Transcriptional reporter assays are essential to quantify the effect of gene expression regulator elements. Additionally, transcriptional reporter systems are a key tool in understanding control of gene expression in biology. In this work, we construct and characterize a dual color luciferase ratiometric reporter system that possesses several advantages over currently used reporters. It is ratiometric, thus reducing variability and increasing consistency between experiments; it is fast, as both reporters can be measured at the same time in a single reaction, and it is less expensive to perform than current dual luciferase reporter assays. We have validated our system quantifying the transcriptional capability of a panel of promoters and terminators commonly used in synthetic biology with a broad range of expression magnitudes, and in a biologically relevant system, nitrate response.


Subject(s)
Gene Expression Regulation, Plant , Genes, Reporter , Luciferases/genetics , Plants/metabolism , Transcription, Genetic
10.
ACS Nano ; 15(6): 10309-10317, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34105936

ABSTRACT

The global SARS-CoV-2 coronavirus pandemic has led to a surging demand for rapid and efficient viral infection diagnostic tests, generating a supply shortage in diagnostic test consumables including nucleic acid extraction kits. Here, we develop a modular method for high-yield extraction of viral single-stranded nucleic acids by using "capture" ssDNA sequences attached to carbon nanotubes. Target SARS-CoV-2 viral RNA can be captured by ssDNA-nanotube constructs via hybridization and separated from the liquid phase in a single-tube system with minimal chemical reagents, for downstream quantitative reverse transcription polymerase chain reaction (RT-qPCR) detection. This nanotube-based extraction method enables 100% extraction yield of target SARS-CoV-2 RNA from phosphate-buffered saline in comparison to ∼20% extraction yield when using a commercial silica-column kit. Notably, carbon nanotubes enable extraction of nucleic acids directly from 50% human saliva with a similar efficiency as achieved with commercial DNA/RNA extraction kits, thereby bypassing the need for further biofluid purification and avoiding the use of commercial extraction kits. Carbon nanotube-based extraction of viral nucleic acids facilitates high-yield and high-sensitivity identification of viral nucleic acids such as the SARS-CoV-2 viral genome with a reduced reliance on reagents affected by supply chain obstacles.


Subject(s)
COVID-19 , Nanotubes, Carbon , Nucleic Acids , Humans , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , SARS-CoV-2 , Sensitivity and Specificity
11.
Nat Protoc ; 15(9): 3064-3087, 2020 09.
Article in English | MEDLINE | ID: mdl-32807907

ABSTRACT

Targeted downregulation of select endogenous plant genes is known to confer disease or pest resistance in crops and is routinely accomplished via transgenic modification of plants for constitutive gene silencing. An attractive alternative to the use of transgenics or pesticides in agriculture is the use of a 'green' alternative known as RNAi, which involves the delivery of siRNAs that downregulate endogenous genes to confer resistance. However, siRNA is a molecule that is highly susceptible to enzymatic degradation and is difficult to deliver across the lignin-rich and multi-layered plant cell wall that poses the dominant physical barrier to biomolecule delivery in plants. We have demonstrated that DNA nanostructures can be utilized as a cargo carrier for direct siRNA delivery and gene silencing in mature plants. The size, shape, compactness and stiffness of the DNA nanostructure affect both internalization into plant cells and subsequent gene silencing efficiency. Herein, we provide a detailed protocol that can be readily adopted with standard biology benchtop equipment to generate geometrically optimized DNA nanostructures for transgene-free and force-independent siRNA delivery and gene silencing in mature plants. We further discuss how such DNA nanostructures can be rationally designed to efficiently enter plant cells and deliver cargoes to mature plants, and provide guidance for DNA nanostructure characterization, storage and use. The protocol described herein can be completed in 4 d.


Subject(s)
DNA/chemistry , Drug Carriers/chemistry , Engineering , Nanostructures/chemistry , Nicotiana/metabolism , RNA, Small Interfering/metabolism , DNA/metabolism , Drug Carriers/metabolism , RNA, Small Interfering/genetics , Nicotiana/genetics
12.
Proc Natl Acad Sci U S A ; 117(6): 3261-3269, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31988133

ABSTRACT

Light-environment signals, sensed by plant phytochrome photoreceptors, are transduced to target genes through direct regulation of PHYTOCHROME-INTERACTING FACTOR (PIF) transcription factor abundance and activity. Previous genome-wide DNA-binding and expression analysis has identified a set of genes that are direct targets of PIF transcriptional regulation. However, quantitative analysis of promoter occupancy versus expression level has suggested that unknown "trans factors" modulate the intrinsic transcriptional activation activity of DNA-bound PIF proteins. Here, using computational analysis of published data, we have identified PSEUDO-RESPONSE REGULATORS (PRR5 and PRR7) as displaying a high frequency of colocalization with the PIF proteins at their binding sites in the promoters of PIF Direct Target Genes (DTGs). We show that the PRRs function to suppress PIF-stimulated growth in the light and vegetative shade and that they repress the rapid PIF-induced expression of PIF-DTGs triggered by exposure to shade. The repressive action of the PRRs on both growth and DTG expression requires the PIFs, indicating direct action on PIF activity, rather than a parallel antagonistic pathway. Protein interaction assays indicate that the PRRs exert their repressive activity by binding directly to the PIF proteins in the nucleus. These findings support the conclusion that the PRRs function as direct outputs from the core circadian oscillator to regulate the expression of PIF-DTGs through modulation of PIF transcriptional activation activity, thus expanding the roles of the multifunctional PIF-signaling hub.


Subject(s)
Arabidopsis Proteins , Basic Helix-Loop-Helix Transcription Factors , Circadian Clocks/genetics , Photosynthesis/genetics , Transcriptional Activation/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant/genetics , Photoreceptors, Plant/genetics , Photoreceptors, Plant/metabolism , Phytochrome/genetics , Phytochrome/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Nat Protoc ; 14(10): 2954-2971, 2019 10.
Article in English | MEDLINE | ID: mdl-31534231

ABSTRACT

Exogenous biomolecule delivery into plants is difficult because the plant cell wall poses a dominant transport barrier, thereby limiting the efficiency of plant genetic engineering. Traditional DNA delivery methods for plants suffer from host-species limitations, low transformation efficiencies, tissue damage, or unavoidable and uncontrolled DNA integration into the host genome. We have demonstrated efficient plasmid DNA delivery into intact plants of several species with functionalized high-aspect-ratio carbon nanotube (CNT) nanoparticles (NPs), enabling efficient DNA delivery into a variety of non-model plant species (arugula, wheat, and cotton) and resulting in high protein expression levels without transgene integration. Herein, we provide a protocol that can be implemented by plant biologists and adapted to produce functionalized single-walled CNTs (SWNTs) with surface chemistries optimized for delivery of plasmid DNA in a plant species-independent manner. This protocol describes how to prepare, construct, and optimize polyethylenimine (PEI)-functionalized SWNTs and perform plasmid DNA loading. The authors also provide guidance on material characterization, gene expression evaluation, and storage conditions. The entire protocol, from the covalent functionalization of SWNTs to expression quantification, can be completed in 5 d.


Subject(s)
DNA/genetics , Gene Transfer Techniques , Nanotubes, Carbon , Plants/genetics , Crops, Agricultural/genetics , Nanotubes, Carbon/chemistry , Plants, Genetically Modified , Plasmids/genetics , Polyethyleneimine/chemistry , Transgenes
14.
Front Plant Sci ; 8: 788, 2017.
Article in English | MEDLINE | ID: mdl-28588590

ABSTRACT

Plant shoot systems give rise to characteristic above-ground plant architectures. Shoots are formed from axillary meristems and buds, whose growth and development is modulated by systemic and local signals. These cues convey information about nutrient and water availability, light quality, sink/source organ activity and other variables that determine the timeliness and competence to maintain development of new shoots. This information is translated into a local response, in meristems and buds, of growth or quiescence. Although some key genes involved in the onset of bud latency have been identified, the gene regulatory networks (GRNs) controlled by these genes are not well defined. Moreover, it has not been determined whether bud dormancy induced by environmental cues, such as a low red-to-far-red light ratio, shares genetic mechanisms with bud latency induced by other causes, such as apical dominance or a short-day photoperiod. Furthermore, the evolution and conservation of these GRNs throughout angiosperms is not well established. We have reanalyzed public transcriptomic datasets that compare quiescent and active axillary buds of Arabidopsis, with datasets of axillary buds of the woody species Vitis vinifera (grapevine) and apical buds of Populus tremula x Populus alba (poplar) during the bud growth-to-dormancy transition. Our aim was to identify potentially common GRNs induced during the process that leads to bud para-, eco- and endodormancy. In Arabidopsis buds that are entering eco- or paradormancy, we have identified four induced interrelated GRNs that correspond to a carbon (C) starvation syndrome, typical of tissues undergoing low C supply. This response is also detectable in poplar and grapevine buds before and during the transition to dormancy. In all eukaryotes, C-limiting conditions are coupled to growth arrest and latency like that observed in dormant axillary buds. Bud dormancy might thus be partly a consequence of the underlying C starvation syndrome triggered by environmental and endogenous cues that anticipate or signal conditions unfavorable for sustained shoot growth.

15.
Nat Commun ; 8: 15236, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28492231

ABSTRACT

Upon light-induced nuclear translocation, phytochrome (phy) sensory photoreceptors interact with, and induce rapid phosphorylation and consequent ubiquitin-mediated degradation of, transcription factors, called PIFs, thereby regulating target gene expression and plant development. Nevertheless, the biochemical mechanism of phy-induced PIF phosphorylation has remained ill-defined. Here we identify a family of nuclear protein kinases, designated Photoregulatory Protein Kinases (PPK1-4; formerly called MUT9-Like Kinases (MLKs)), that interact with PIF3 and phyB in a light-induced manner in vivo. Genetic analyses demonstrate that the PPKs are collectively necessary for the normal light-induced phosphorylation and degradation of PIF3. PPK1 directly phosphorylates PIF3 in vitro, with a phosphosite pattern that strongly mimics the light-induced pattern in vivo. These data establish that the PPKs are directly involved in catalysing the photoactivated-phy-induced phosphorylation of PIF3 in vivo, and thereby are critical components of a transcriptionally centred signalling hub that pleiotropically regulates plant growth and development in response to multiple signalling pathways.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/radiation effects , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Plant , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/genetics , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Isoenzymes/genetics , Isoenzymes/metabolism , Light , Light Signal Transduction , Phosphorylation/radiation effects , Phytochrome B/genetics , Phytochrome B/metabolism , Protein Serine-Threonine Kinases/metabolism , Proteolysis , Ubiquitination
16.
Proc Natl Acad Sci U S A ; 114(2): E245-E254, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28028241

ABSTRACT

Shoot-branching patterns determine key aspects of plant life and are important targets for crop breeding. However, we are still largely ignorant of the genetic networks controlling locally the most important decision during branch development: whether the axillary bud, or branch primordium, grows out to give a lateral shoot or remains dormant. Here we show that, inside the buds, the TEOSINTE BRANCHED1, CYCLOIDEA, PCF (TCP) transcription factor BRANCHED1 (BRC1) binds to and positively regulates the transcription of three related Homeodomain leucine zipper protein (HD-ZIP)-encoding genes: HOMEOBOX PROTEIN 21 (HB21), HOMEOBOX PROTEIN 40 (HB40), and HOMEOBOX PROTEIN 53 (HB53). These three genes, together with BRC1, enhance 9-CIS-EPOXICAROTENOID DIOXIGENASE 3 (NCED3) expression, lead to abscisic acid accumulation, and trigger hormone response, thus causing suppression of bud development. This TCP/HD-ZIP genetic module seems to be conserved in dicot and monocotyledonous species to prevent branching under light-limiting conditions.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Dioxygenases/genetics , Plant Proteins/genetics , Plant Shoots/metabolism , Transcription Factors/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Plant Shoots/genetics , Signal Transduction , Transcription Factors/metabolism
17.
Plant Signal Behav ; 9(2): e27994, 2014.
Article in English | MEDLINE | ID: mdl-24518068

ABSTRACT

In Arabidopsis, axillary buds may become dormant in response to a far-red rich light or to increased apical dominance. BRANCHED1 (BRC1) is required for this response. Transcriptional profiling studies of wild-type and brc1 mutant buds allowed the identification of sets of BRC1-dependent genes including a group of ABA-related genes upregulated in dormant buds. By using BRC1 inducible lines we demonstrate that 2 of these ABA response factors, ABF3 and ABI5, are positively regulated in axillary buds by BRC1 after induction. To get further insight into the genetic control of the growth-to-dormancy transition in buds we have also compared this transcriptomic data with 2 additional "active vs dormant bud" transcriptomic data sets and found "core" co-regulated gene networks tightly associated to each condition.


Subject(s)
Arabidopsis/genetics , Flowers/genetics , Genes, Plant , Abscisic Acid/pharmacology , Arabidopsis/drug effects , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flowers/drug effects , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
18.
Plant Cell ; 25(3): 834-50, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23524661

ABSTRACT

Plants interpret a decrease in the red to far-red light ratio (R:FR) as a sign of impending shading by neighboring vegetation. This triggers a set of developmental responses known as shade avoidance syndrome. One of these responses is reduced branching through suppression of axillary bud outgrowth. The Arabidopsis thaliana gene BRANCHED1 (BRC1), expressed in axillary buds, is required for branch suppression in response to shade. Unlike wild-type plants, brc1 mutants develop several branches after a shade treatment. BRC1 transcription is positively regulated 4 h after exposure to low R:FR. Consistently, BRC1 is negatively regulated by phytochrome B. Transcriptional profiling of wild-type and brc1 buds of plants treated with simulated shade has revealed groups of genes whose mRNA levels are dependent on BRC1, among them a set of upregulated abscisic acid response genes and two networks of cell cycle- and ribosome-related downregulated genes. The downregulated genes have promoters enriched in TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP) binding sites, suggesting that they could be transcriptionally regulated by TCP factors. Some of these genes respond to BRC1 in seedlings and buds, supporting their close relationship with BRC1 activity. This response may allow the rapid adaptation of plants to fluctuations in the ratio of R:FR light.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Light , Plant Dormancy , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Binding Sites , Cell Division , Consensus Sequence , Gene Regulatory Networks , Genes, Plant , Nucleotide Motifs , Phenotype , Phytochrome B/genetics , Phytochrome B/metabolism , Promoter Regions, Genetic , Seedlings/genetics , Seedlings/metabolism , Seedlings/physiology , Transcription Factors/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...