ABSTRACT
After removal of the fast N-type inactivation gate, voltage-sensitive Shaker (Shaker IR) K channels are still able to inactivate, albeit slowly, upon sustained depolarization. The classical mechanism proposed for the slow inactivation observed in cell-free membrane patches--the so called C inactivation--is a constriction of the external mouth of the channel pore that prevents K(+) ion conduction. This constriction is antagonized by the external application of the pore blocker tetraethylammonium (TEA). In contrast to C inactivation, here we show that, when recorded in whole Xenopus oocytes, slow inactivation kinetics in Shaker IR K channels is poorly dependent on external TEA but severely delayed by internal TEA. Based on the antagonism with internally or externally added TEA, we used a two-pulse protocol to show that half of the channels inactivate by way of a gate sensitive to internal TEA. Such gate had a recovery time course in the tens of milliseconds range when the interpulse voltage was -90 mV, whereas C-inactivated channels took several seconds to recover. Internal TEA also reduced gating charge conversion associated to slow inactivation, suggesting that the closing of the internal TEA-sensitive inactivation gate could be associated with a significant amount of charge exchange of this type. We interpreted our data assuming that binding of internal TEA antagonized with U-type inactivation (Klemic, K.G., G.E. Kirsch, and S.W. Jones. 2001. Biophys. J. 81:814-826). Our results are consistent with a direct steric interference of internal TEA with an internally located slow inactivation gate as a "foot in the door" mechanism, implying a significant functional overlap between the gate of the internal TEA-sensitive slow inactivation and the primary activation gate. But, because U-type inactivation is reduced by channel opening, trapping the channel in the open conformation by TEA would also yield to an allosteric delay of slow inactivation. These results provide a framework to explain why constitutively C-inactivated channels exhibit gating charge conversion, and why mutations at the internal exit of the pore, such as those associated to episodic ataxia type I in hKv1.1, cause severe changes in inactivation kinetics.
Subject(s)
Ion Channel Gating/drug effects , Ion Channel Gating/physiology , Kv1.4 Potassium Channel/drug effects , Kv1.4 Potassium Channel/metabolism , Tetraethylammonium/pharmacology , Allosteric Site/drug effects , Allosteric Site/physiology , Animals , Cytoplasm/metabolism , Electrophysiology , Energy Transfer/physiology , Female , Kv1.4 Potassium Channel/genetics , Membrane Potentials , Mice , Oocytes , Potassium/metabolism , Potassium Channel Blockers/metabolism , Potassium Channel Blockers/pharmacology , Protein Interaction Domains and Motifs/drug effects , Protein Interaction Domains and Motifs/genetics , Structure-Activity Relationship , Tetraethylammonium/metabolism , Thermodynamics , Xenopus laevisABSTRACT
Voltage-dependent calcium channels consist of a pore-forming subunit (Ca(V)alpha(1)) that includes all the molecular determinants of a voltage-gated channel, and several accessory subunits. The ancillary beta-subunit (Ca(V)beta) is a potent activator of voltage-dependent calcium channels, but the mechanisms and structural bases of this regulation remain elusive. Ca(V)beta binds reversibly to a conserved consensus sequence in Ca(V)alpha(1), the alpha(1)-interaction domain (AID), which forms an alpha-helix when complexed with Ca(V)beta. Conserved aromatic residues face to one side of the helix and strongly interact with a hydrophobic pocket on Ca(V)beta. Here, we studied the effect of mutating residues located opposite to the AID-Ca(V)beta contact surface in Ca(V)1.2. Substitution of AID-exposed residues by the corresponding amino acids present in other Ca(V)alpha(1) subunits (E462R, K465N, D469S, and Q473K) hinders Ca(V)beta's ability to increase ionic-current to charge-movement ratio (I/Q) without changing the apparent affinity for Ca(V)beta. At the single channel level, these Ca(V)1.2 mutants coexpressed with Ca(V)beta(2a) visit high open probability mode less frequently than wild-type channels. On the other hand, Ca(V)1.2 carrying either a mutation in the conserved tryptophan residue (W470S, which impairs Ca(V)beta binding), or a deletion of the whole AID sequence, does not exhibit Ca(V)beta-induced increase in I/Q. In addition, we observed a shift in the voltage dependence of activation by +12 mV in the AID-deleted channel in the absence of Ca(V)beta, suggesting a direct participation of these residues in the modulation of channel activation. Our results show that Ca(V)beta-dependent potentiation arises primarily from changes in the modal gating behavior. We envision that Ca(V)beta spatially reorients AID residues that influence the channel gate. These findings provide a new framework for understanding modulation of VDCC gating by Ca(V)beta.