Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomedicines ; 10(7)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35884787

ABSTRACT

Alcoholism is a worldwide public health problem with high economic cost and which affects health and social behavior. It is estimated that alcoholism kills 3 million people globally, while in Chile it is responsible for around 9 thousand deaths per year. Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels expressed in the central nervous system, and they were suggested to modulate the ethanol mechanism involved in abuse and dependence. Previous work demonstrated a short-term treatment with UFR2709, a nAChRs antagonist, which reduced ethanol intake using a two-bottle free-choice paradigm in University of Chile bibulous (UChB) rats. Here, we present evidence of the UFR2709 efficacy in reducing the acquisition and long-term ethanol consumption. Our results show that UFR2709 (2.5 mg/kg i.p.) reduces the seek behavior and ethanol intake, even when the drug administration was stopped, and induced a reduction in the overall ethanol intake by around 55%. Using naïve UChB bibulous rats, we demonstrate that UFR2709 could delay and reduce the genetically adaptive impulse to seek and drink ethanol and prevent its excessive intake.

2.
Molecules ; 25(13)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32630020

ABSTRACT

Zebrafish is becoming a popular animal model in neuropharmacology and drug discovery, mainly due to its ease of handling and low costs involved in maintenance and experimental work. This animal displays a series of complex behaviours that makes it useful for assessing the effects of psychoactive drugs. Here, adult zebrafish were used for assessment of the anxiolytic and anti-addictive properties of UFR2709, a nicotinic receptor (nAChR) antagonist, using two behavioural paradigms to test for addiction, the novel tank diving test to assess anxiety and the conditioned place preference (CPP). Furthermore, the expression of nAChR subunits α4 and α7 was measured in the zebrafish brain. The results show that UFR2709 exhibits an anxiolytic effect on zebrafish and blocks the effect evoked by nicotine on CPP. Moreover, UFR2709 significantly decreased the expression of α4 nicotinic receptor subunit. This indicates that UFR2709 might be a useful drug for the treatment of nicotine addiction.


Subject(s)
Anti-Anxiety Agents/pharmacology , Anxiety/prevention & control , Behavior, Animal/drug effects , Benzoates/pharmacology , Nicotine/antagonists & inhibitors , Nicotinic Antagonists/pharmacology , Pyrrolidines/pharmacology , Receptors, Nicotinic/metabolism , Reward , Animals , Anxiety/chemically induced , Disease Models, Animal , Nicotine/administration & dosage , Receptors, Nicotinic/genetics , Swimming , Zebrafish
3.
Front Pharmacol ; 10: 1429, 2019.
Article in English | MEDLINE | ID: mdl-31849674

ABSTRACT

Brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of pentameric acetylcholine-gated cation channels, have been suggested as molecular targets for the treatment of alcohol abuse and dependence. Here, we examined the effect of the competitive nAChR antagonist UFR2709 on the alcohol consumption of high-alcohol-drinking UChB rats. UChB rats were given free access to ethanol for 24-h periods in a two-bottle free choice paradigm and their ethanol and water intake were measured. The animals were i.p. injected daily for 17 days with a 10, 5, 2.5, or 1 mg/kg dose of UFR2709. Potential confounding motor effects of UFR2709 were assessed by examining the locomotor activity of animals administered the highest dose of UR2709 tested (10 mg/kg i.p.). UFR2709 reduced ethanol consumption and ethanol preference and increased water consumption in a dose-dependent manner. The most effective dose of UFR2709 was 2.5 mg/kg, which induced a 56% reduction in alcohol consumption. Administration of UFR2709 did not affect the weight or locomotor activity of the rats, suggesting that its effects on alcohol consumption and preference were mediated by specific nAChRs.

4.
Molecules ; 24(20)2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31652614

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs), serotonin transporters (SERT) and dopamine transporters (DAT) represent targets for the development of novel nicotinic derivatives acting as multiligands associated with different health conditions, such as depressive, anxiety and addiction disorders. In the present work, a series of functionalized esters structurally related to acetylcholine and nicotine were synthesized and pharmacologically assayed with respect to these targets. The synthesized compounds were studied in radioligand binding assays at α4ß2 nAChR, h-SERT and h-DAT. SERT experiments showed not radioligand [3H]-paroxetine displacement, but rather an increase in the radioligand binding percentage at the central binding site was observed. Compound 20 showed Ki values of 1.008 ± 0.230 µM for h-DAT and 0.031 ± 0.006 µM for α4ß2 nAChR, and [3H]-paroxetine binding of 191.50% in h-SERT displacement studies, being the only compound displaying triple affinity. Compound 21 displayed Ki values of 0.113 ± 0.037 µM for α4ß2 nAChR and 0.075 ± 0.009 µM for h-DAT acting as a dual ligand. Molecular docking studies on homology models of α4ß2 nAChR, h-DAT and h-SERT suggested potential interactions among the compounds and agonist binding site at the α4/ß2 subunit interfaces of α4ß2 nAChR, central binding site of h-DAT and allosteric modulator effect in h-SERT.


Subject(s)
Acetylcholine/analogs & derivatives , Dopamine Plasma Membrane Transport Proteins/chemistry , Nicotine/analogs & derivatives , Receptors, Nicotinic/chemistry , Serotonin Plasma Membrane Transport Proteins/chemistry , Acetylcholine/agonists , Acetylcholine/chemical synthesis , Acetylcholine/chemistry , Allosteric Regulation , Binding Sites , Dopamine/chemistry , Dopamine Agonists/chemistry , Dopamine Plasma Membrane Transport Proteins/agonists , Esters/chemistry , HEK293 Cells , Humans , Ligands , Molecular Docking Simulation , Nicotine/agonists , Nicotine/chemical synthesis , Nicotine/chemistry , Nicotinic Agonists/chemistry , Pyrrolidines/chemistry , Radioligand Assay , Serotonin Plasma Membrane Transport Proteins/agonists , Structure-Activity Relationship
5.
Molecules ; 24(15)2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31344816

ABSTRACT

Neuronal α4ß2 nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels (LGIC) that have been implicated in nicotine addiction, reward, cognition, pain disorders, anxiety, and depression. Nicotine has been widely used as a template for the synthesis of ligands that prefer α4ß2 nAChRs subtypes. The most important therapeutic use for α4ß2 nAChRs is as replacement therapy for smoking cessation and withdrawal and the most successful therapeutic ligands are partial agonists. In this case, we use the N-methylpyrrolidine moiety of nicotine to design and synthesize new α4ß2 nicotinic derivatives, coupling the pyrrolidine moiety to an aromatic group by introducing an ether-bonded functionality. Meta-substituted phenolic derivatives were used for these goals. Radioligand binding assays were performed on clonal cell lines of hα4ß2 nAChR and two electrode voltage-clamp experiments were used for functional assays. Molecular docking was performed in the open state of the nAChR in order to rationalize the agonist activity shown by our compounds.


Subject(s)
Nicotine/chemistry , Nicotine/pharmacology , Nicotinic Agonists/chemistry , Nicotinic Agonists/pharmacology , Receptors, Nicotinic/chemistry , Binding, Competitive , Dose-Response Relationship, Drug , Humans , Kinetics , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Nicotine/analogs & derivatives , Protein Binding , Structure-Activity Relationship
6.
Bioorg Med Chem ; 21(10): 2687-94, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23561269

ABSTRACT

Nicotine is an agonist of nicotinic acetylcholine receptors (nAChRs) that has been extensively used as a template for the synthesis of α4ß2-preferring nAChRs. Here, we used the N-methyl-pyrrolidine moiety of nicotine to design and synthesise novel α4ß2-preferring neonicotinic ligands. We increased the distance between the basic nitrogen and aromatic group of nicotine by introducing an ester functionality that also mimics acetylcholine (Fig. 2). Additionally, we introduced a benzyloxy group linked to the benzoyl moiety. Although the neonicotinic compounds fully inhibited binding of both [α-(125)I]bungarotoxin to human α7 nAChRs and [(3)H]cytisine to human α4ß2 nAChRs, they were markedly more potent at displacing radioligand binding to human α4ß2 nAChRs than to α7 nAChRs. Functional assays showed that the neonicotinic compounds behave as antagonists at α4ß2 and α4ß2α5 nAChRs. Substitutions on the aromatic ring of the compounds produced compounds that displayed marked selectivity for α4ß2 or α4ß2α5 nAChRs. Docking of the compounds on homology models of the agonist binding site at the α4/ß2 subunit interfaces of α4ß2 nAChRs suggested the compounds inhibit function of this nAChR type by binding the agonist binding site.


Subject(s)
Nicotinic Agonists/chemistry , Nicotinic Agonists/pharmacology , Receptors, Nicotinic/metabolism , Humans , Receptors, Nicotinic/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...