Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Dev ; 37(7-8): 303-320, 2023 04 01.
Article in English | MEDLINE | ID: mdl-37024284

ABSTRACT

MYC's key role in oncogenesis and tumor progression has long been established for most human cancers. In melanoma, its deregulated activity by amplification of 8q24 chromosome or by upstream signaling coming from activating mutations in the RAS/RAF/MAPK pathway-the most predominantly mutated pathway in this disease-turns MYC into not only a driver but also a facilitator of melanoma progression, with documented effects leading to an aggressive clinical course and resistance to targeted therapy. Here, by making use of Omomyc, the most characterized MYC inhibitor to date that has just successfully completed a phase I clinical trial, we show for the first time that MYC inhibition in melanoma induces remarkable transcriptional modulation, resulting in severely compromised tumor growth and a clear abrogation of metastatic capacity independently of the driver mutation. By reducing MYC's transcriptional footprint in melanoma, Omomyc elicits gene expression profiles remarkably similar to those of patients with good prognosis, underlining the therapeutic potential that such an approach could eventually have in the clinic in this dismal disease.


Subject(s)
Melanoma , Humans , Prognosis , Melanoma/genetics , Signal Transduction , Carcinogenesis , Cell Transformation, Neoplastic , Proto-Oncogene Proteins c-myc/metabolism
3.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298983

ABSTRACT

The use of autologous tolerogenic dendritic cells (tolDC) has become a promising strategy to re-establish immune tolerance in autoimmune diseases. Among the different strategies available, the use of vitamin D3 for the generation of tolDC (VitD3-tolDC) has been widely tested because of their immune regulatory properties. To identify molecules and pathways involved in the generation of VitD3-tolDC, we established an easy and fast gene silencing method based on the use of Viromer blue to introduce siRNA into monocytes on day 1 of culture differentiation. The analysis of the effect of CD209 (DC-SIGN) and CD115 (CSF1R) down-modulation on the phenotype and functionality of transfected VitD3-tolDC revealed a partial role of CD115 in their tolerogenicity. Further investigations showed that CSF1R-CSF1 signaling is involved in the induction of cell metabolic reprogramming, triggering glycolysis to produce high amounts of lactate, a novel suppressive mechanism of T cell proliferation, recently found in autologous tolerogenic dendritic cells (ATDCs).


Subject(s)
Cholecalciferol/pharmacology , Dendritic Cells/immunology , Glycolysis/physiology , Immune Tolerance/genetics , Leukocytes, Mononuclear/immunology , Macrophage Colony-Stimulating Factor/physiology , Monocytes/immunology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/physiology , Cells, Cultured , Coculture Techniques , Culture Media, Conditioned , Dendritic Cells/drug effects , Glucose/metabolism , Humans , Hydrogen-Ion Concentration , Interleukins/pharmacology , Lactates/metabolism , Signal Transduction , Transfection
4.
Life Sci Alliance ; 4(5)2021 05.
Article in English | MEDLINE | ID: mdl-33653688

ABSTRACT

The huge cadre of genes regulated by Myc has obstructed the identification of critical effectors that are essential for Myc-driven tumorigenesis. Here, we describe how only the lack of the receptor Fzd9, previously identified as a Myc transcriptional target, impairs sustained tumor expansion and ß-cell dedifferentiation in a mouse model of Myc-driven insulinoma, allows pancreatic islets to maintain their physiological structure and affects Myc-related global gene expression. Importantly, Wnt signaling inhibition in Fzd9-competent mice largely recapitulates the suppression of proliferation caused by Fzd9 deficiency upon Myc activation. Together, our results indicate that the Wnt signaling receptor Fzd9 is essential for Myc-induced tumorigenesis in pancreatic islets.


Subject(s)
Adenoma, Islet Cell/physiopathology , Carcinogenesis/metabolism , Frizzled Receptors/metabolism , Adenoma, Islet Cell/metabolism , Animals , Cell Movement , Cell Proliferation , Female , Frizzled Receptors/genetics , Frizzled Receptors/physiology , Genes, myc/genetics , Genes, myc/physiology , Islets of Langerhans/metabolism , Male , Mice , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiology , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...