Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 192(3): 823-836, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31982953

ABSTRACT

Land-use intensification (LUI) and biological invasions are two of the most important global change pressures driving biodiversity loss. However, their combined impacts on biological communities have been seldom explored, which may result in misleading ecological assessments or mitigation actions. Based on an extensive field survey of 445 paired invaded and control plots of coastal vegetation in SW Spain, we explored the joint effects of LUI (agricultural and urban intensification) and invasion on the taxonomic and functional richness, mean plant height and leaf area of native plants. Our survey covered five invasive species with contrasting functional similarity and competitive ability in relation to the native community. We modeled the response of native communities for the overall and invader-specific datasets, and determined if invader-native functional differences could influence the combined impacts of LUI and invasion. Overall, we found that urban intensification reduced taxonomic richness more strongly at invaded plots (synergistic interactive effects). In contrast, functional richness loss caused by urban intensification was less pronounced at invaded plots (antagonistic interactive effects). Overall models showed also that urban intensification led to reduced mean leaf area, while agriculture was linked to higher mean plant height. When exploring invader-specific models, we observed that the combined effects of agricultural and urban intensification with invasion were heterogeneous. At invaded plots, invader-native functional differences accounted for part of this variability. Our findings demonstrate the importance of considering the interactive effects of global change pressures for a better assessment and management of ecosystems.


Subject(s)
Ecosystem , Plants , Biodiversity , Introduced Species , Spain
2.
Biotechnol Adv ; 27(4): 398-408, 2009.
Article in English | MEDLINE | ID: mdl-19268517

ABSTRACT

The cost of lipases and the relatively slower reaction rate remain as the major obstacles for enzymatic production of biodiesel as opposed to the conventional chemical processes. This paper reviews the starting oils usually employed in biodiesel production, the processes for transforming them to biodiesel placing particular emphasis on enzymatic transesterification. The pros and cons of the lipase-based process, the key operational variables and the technological alternatives for attenuating lipase deactivation are also discussed. Finally, suggestions are made for future studies, paying particular attention to the use of whole cell immobilization in the production process, as this methodology may reduce both the cost of the biocatalyst and dependence on lipase manufacturers.


Subject(s)
Energy-Generating Resources , Lipase/metabolism , Plant Oils/metabolism , Biocatalysis , Cells, Immobilized/enzymology , Cells, Immobilized/metabolism , Enzymes, Immobilized/metabolism , Equipment Design , Esterification , Green Chemistry Technology , Hydrogen-Ion Concentration
3.
Biotechnol Prog ; 20(4): 1044-52, 2004.
Article in English | MEDLINE | ID: mdl-15296428

ABSTRACT

Structured triacylglycerols (ST) enriched in eicosapentaenoic acid (EPA) in position 2 of the triacylglycerol (TAG) backbone were synthesized by acidolysis of a commercially available EPA-rich oil (EPAX4510, 40% EPA) and caprylic acid (CA), catalyzed by the 1,3-specific immobilized lipase Lipozyme IM. The reaction was carried out in a packed bed reactor (PBR) operating in two ways: (1) by recirculating the reaction mixture from the exit of the bed to the substrate reservoir (discontinuous mode) and (2) in continuous mode, directing the product mixture leaving the PBR to a product reservoir. By operating in these two ways and using a simple kinetic model, representative values for the apparent kinetic constants (kX) for each fatty acid (native, Li or odd, M) were obtained. The kinetic model assumes that the rate of incorporation of a fatty acid into TAG per amount of enzyme, rX (mole/(h g lipase)) is proportional to the extent of the deviation from the equilibrium for each fatty acid (i.e., the difference of concentration between the fatty acid in the triacylglycerol and the concentration of the same fatty acid in the triacylglycerol once the equilibrium of the acidolysis reaction is reached). The model allows comparing the two operating modes through the processing intensity, defined as mLt/(V[TG]0) and mL/(q[TG]0), for the discontinuous and continuous operation modes, respectively. In discontinuous mode, ST with 59.5% CA and 9.6% EPA were obtained. In contrast, a ST with 51% CA and 19.6% EPA were obtained when using the continuous operation mode. To enhance the CA incorporation when operating in continuous mode, a two-step acidolysis reaction was performed (third operation mode). This continuous two-step process yields a ST with a 64% CA and a 15% EPA. Finally, after purifying the above ST in a preparative silica gel column, impregnated with boric acid, a ST with 66.9% CA and 19.6% EPA was obtained. The analysis by reverse phase and Ag+ liquid chromatography of the EPA-enriched ST demonstrated that the CA was placed in positions 1 and 3 and the EPA was occupying position 2 of the final ST.


Subject(s)
Acids/chemistry , Caprylates/chemistry , Eicosapentaenoic Acid/chemistry , Fish Oils/chemistry , Lipids/chemistry , Bioreactors , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Hydrolysis , Lipase/chemistry , Lipase/metabolism , Triglycerides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...