Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 346: 118996, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37725864

ABSTRACT

Nitrogen (N) fertilization is crucial to sustain global food security, but fertilizer N production is energy-demanding and subsequent environmental N losses contribute to biodiversity loss and climate change. N losses can be mitigated be interfering with microbial nitrification, and therefore the use of nitrification inhibitors in enhanced efficiency fertilizers (EEFs) is an important N management strategy to increase N use efficiency and reduce N pollution. However, currently applied nitrification inhibitors have limitations and do not target all nitrifying microorganisms. Here, to identify broad-spectrum nitrification inhibitors, we adopted a drug discovery-based approach and screened 45,400 small molecules on different groups of nitrifying microorganisms. Although a high number of potential nitrification inhibitors were identified, none of them targeted all nitrifier groups. Moreover, a high number of new nitrification inhibitors were shown to be highly effective in culture but did not reduce ammonia consumption in soil. One archaea-targeting inhibitor was not only effective in soil, but even reduced - when co-applied with a bacteria-targeting inhibitor - ammonium consumption and greenhouse gas emissions beyond what is achieved with currently applied nitrification inhibitors. This advocates for combining different types of nitrification inhibitors in EEFs to optimize N management practices and make agriculture more sustainable.

3.
J Environ Sci (China) ; 127: 222-233, 2023 May.
Article in English | MEDLINE | ID: mdl-36522055

ABSTRACT

Agriculture has increased the release of reactive nitrogen to the environment due to crops' low nitrogen-use efficiency (NUE) after the application of nitrogen-fertilisers. Practices like the use of stabilized-fertilisers with nitrification inhibitors such as DMPP (3,4-dimethylpyrazole phosphate) have been adopted to reduce nitrogen losses. Otherwise, cover crops can be used in crop-rotation-strategies to reduce soil nitrogen pollution and benefit the following culture. Sorghum (Sorghum bicolor) could be a good candidate as it is drought tolerant and its culture can reduce nitrogen losses derived from nitrification because it exudates biological nitrification inhibitors (BNIs). This work aimed to evaluate the effect of fallow-wheat and sorghum cover crop-wheat rotations on N2O emissions and the grain yield of winter wheat crop. In addition, the suitability of DMPP addition was also analyzed. The use of sorghum as a cover crop might not be a suitable option to mitigate nitrogen losses in the subsequent crop. Although sorghum-wheat rotation was able to reduce 22% the abundance of amoA, it presented an increment of 77% in cumulative N2O emissions compared to fallow-wheat rotation, which was probably related to a greater abundance of heterotrophic-denitrification genes. On the other hand, the application of DMPP avoided the growth of ammonia-oxidizing bacteria and maintained the N2O emissions at the levels of unfertilized-soils in both rotations. As a conclusion, the use of DMPP would be recommendable regardless of the rotation since it maintains NH4+ in the soil for longer and mitigates the impact of the crop residues on nitrogen soil dynamics.


Subject(s)
Fertilizers , Nitrification , Dimethylphenylpiperazinium Iodide/pharmacology , Agriculture , Soil/chemistry , Nitrogen/pharmacology , Crops, Agricultural , Triticum , Crop Production , Nitrous Oxide
4.
Front Plant Sci ; 13: 1034219, 2022.
Article in English | MEDLINE | ID: mdl-36438125

ABSTRACT

Synthetic nitrification inhibitors (SNI) and biological nitrification inhibitors (BNI) are promising tools to limit nitrogen (N) pollution derived from agriculture. Modern wheat cultivars lack sufficient capacity to exude BNIs, but, fortunately, the chromosome region (Lr#n-SA) controlling BNI production in Leymus racemosus, a wild relative of wheat, was introduced into two elite wheat cultivars, ROELFS and MUNAL. Using BNI-isogenic-lines could become a cost-effective, farmer-friendly, and globally scalable technology that incentivizes more sustainable and environmentally friendly agronomic practices. We studied how BNI-trait improves N-uptake, and N-use, both with ammonium and nitrate fertilization, analysing representative indicators of soil nitrification inhibition, and plant metabolism. Synthesizing BNI molecules did not mean a metabolic cost since Control and BNI-isogenic-lines from ROELFS and MUNAL presented similar agronomic performance and plant development. In the soil, ROELFS-BNI and MUNAL-BNI plants decreased ammonia-oxidizing bacteria (AOB) abundance by 60% and 45% respectively, delaying ammonium oxidation without reducing the total abundance of bacteria or archaea. Interestingly, BNI-trait presented a synergistic effect with SNIs since made it also possible to decrease the AOA abundance. ROELFS-BNI and MUNAL-BNI plants showed a reduced leaf nitrate reductase (NR) activity as a consequence of lower soil NO 3 - formation and a higher amino acid content compared to BNI-trait lacking lines, indicating that the transfer of Lr#-SA was able to induce a higher capacity to assimilate ammonium. Moreover, the impact of the BNI-trait in wheat cultivars was also noticeable for nitrate fertilization, with improved N absorption, and therefore, reducing soil nitrate content.

5.
Sci Total Environ ; 807(Pt 1): 150670, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34610408

ABSTRACT

Nitrogen fertilization is the most important factor increasing nitrous oxide (N2O) emissions from agriculture, which is a powerful greenhouse gas. These emissions are mainly produced by the soil microbial processes of nitrification and denitrification, and the application of nitrification inhibitors (NIs) together with an ammonium-based fertilizer has been proved as an efficient way to decrease them. In this work the NIs dimethylpyrazole phosphate (DMPP) and dimethylpyrazole succinic acid (DMPSA) were evaluated in a temperate grassland under environmental changing field conditions in terms of their efficiency reducing N2O emissions and their effect on the amount of nitrifying and denitrifying bacterial populations responsible of these emissions. The stimulation of nitrifying bacteria induced by the application of ammonium sulphate as fertilizer was efficiently avoided by the application of both DMPP and DMPSA whatever the soil water content. The denitrifying bacteria population capable of reducing N2O up to N2 was also enhanced by both NIs provided that sufficiently high soil water conditions and low nitrate content were occurring. Therefore, both NIs showed the capacity to promote the denitrification process up to N2 as a mechanism to mitigate N2O emissions. DMPSA proved to be a promising NI, since it showed a more significant effect than DMPP in decreasing N2O emissions and increasing ryegrass yield.


Subject(s)
Nitrification , Nitrous Oxide , Agriculture , Denitrification , Fertilizers/analysis , Nitrous Oxide/analysis , Soil , Soil Microbiology
6.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34426500

ABSTRACT

Active nitrifiers and rapid nitrification are major contributing factors to nitrogen losses in global wheat production. Suppressing nitrifier activity is an effective strategy to limit N losses from agriculture. Production and release of nitrification inhibitors from plant roots is termed "biological nitrification inhibition" (BNI). Here, we report the discovery of a chromosome region that controls BNI production in "wheat grass" Leymus racemosus (Lam.) Tzvelev, located on the short arm of the "Lr#3Nsb" (Lr#n), which can be transferred to wheat as T3BL.3NsbS (denoted Lr#n-SA), where 3BS arm of chromosome 3B of wheat was replaced by 3NsbS of L. racemosus We successfully introduced T3BL.3NsbS into the wheat cultivar "Chinese Spring" (CS-Lr#n-SA, referred to as "BNI-CS"), which resulted in the doubling of its BNI capacity. T3BL.3NsbS from BNI-CS was then transferred to several elite high-yielding hexaploid wheat cultivars, leading to near doubling of BNI production in "BNI-MUNAL" and "BNI-ROELFS." Laboratory incubation studies with root-zone soil from field-grown BNI-MUNAL confirmed BNI trait expression, evident from suppression of soil nitrifier activity, reduced nitrification potential, and N2O emissions. Changes in N metabolism included reductions in both leaf nitrate, nitrate reductase activity, and enhanced glutamine synthetase activity, indicating a shift toward ammonium nutrition. Nitrogen uptake from soil organic matter mineralization improved under low N conditions. Biomass production, grain yields, and N uptake were significantly higher in BNI-MUNAL across N treatments. Grain protein levels and breadmaking attributes were not negatively impacted. Wide use of BNI functions in wheat breeding may combat nitrification in high N input-intensive farming but also can improve adaptation to low N input marginal areas.


Subject(s)
Agriculture/methods , Chromosomes, Plant/genetics , Crops, Agricultural/growth & development , Nitrification , Nitrogen/metabolism , Plant Proteins/metabolism , Triticum/growth & development , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Triticum/genetics , Triticum/metabolism
7.
Sci Total Environ ; 789: 147975, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34082203

ABSTRACT

RNA-based high-throughput sequencing is a valuable tool in the discernment of the implication of metabolically active bacteria during composting. In this study, "alperujo" composting was used as microbial model for the elucidation of structure-function relationships with physicochemical transformation of the organic matter. DNA and RNA, subsequently retrotranscribed into cDNA, were isolated at the mesophilic, thermophilic and maturation phases. 16S rRNA gene was amplified by quantitative PCR (qPCR) and Illumina MiSeq platform to assess bacterial abundance and diversity, respectively. The results showed that the abundance of active bacteria assessed by qPCR was maximum at thermophilic phase, which confirm it as the most active stage of the process. Concerning diversity, Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the main phyla presented in composts. Concomitantly, three different behaviours were observed for bacterial dynamics: some genera decreased during the whole process meanwhile others proliferated only at thermophilic or maturation phase. Statistical correlation between physicochemical transformations of the organic matter and bacterial diversity revealed bacterial specialisation. This result indicated that specific groups of bacteria were only involved in the organic matter degradation during bio-oxidative phase or humification at maturation. Metabolic functions predictions confirmed that active bacteria were mainly involved in carbon (C) and nitrogen (N) cycles transformations, and pathogen reduction.


Subject(s)
Composting , Olea , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Soil , Soil Microbiology
8.
Sci Total Environ ; 792: 148374, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34153750

ABSTRACT

Nitrogen (N) input from fertilizers modifies the properties of agricultural soils as well as bacterial community diversity, composition and relationships. This can lead to negative impacts such as the deterioration of system multifunctionality, whose maintenance is critical to normal nutrient cycling. Synthetic nitrification inhibitors (NIs) can be combined with fertilizers to improve the efficiency of N use by reducing N losses. However, analysis of their effects on non-target bacteria are scarce. This study aimed to analyze the effect of applying the NIs DMPP and DMPSA on the whole bacterial community. Through 16S rRNA amplicon sequencing we determined the differences between samples in terms of microbial diversity, composition and co-occurrence networks. The application of DMPP and DMPSA exerted little impact on the abundance of the dominant phyla. Nevertheless, several significant shifts were detected in bacterial diversity, co-occurrence networks, and the abundance of particular taxa, where soil water content played a key role. For instance, the application of NIs intensified the negative impact of N fertilization on bacterial diversity under high water-filled pore spaces (WFPS) (>64%), reducing community diversity, whereas alpha-diversity was not affected at low WFPS (<55%). Interestingly, despite NIs are known to inhibit ammonia monooxygenase (AMO) enzyme, both NIs almost exclusively inhibited Nitrosomonas genera among AMO holding nitrifiers. Thus, Nitrosomonas showed abundance reductions of up to 47% (DMPP) and 66% (DMPSA). Nonetheless, non-target bacterial abundances also shifted with NI application. Notably, DMPSA application partially alleviated the negative effect of fertilization on soil multifunctionality. A remarkable increase in populations related to system multifunctionality, such as Armatimonadetes (up to +21%), Cyanobacteria (up to +30%) and Fibrobacteres (up to +25%) was observed when DMPSA was applied. NI application substantially influenced microbial associations by decreasing the complexity of co-occurrence networks, decreasing the total edges and node connectivity, and increasing path distances.


Subject(s)
Nitrification , Soil , Ammonia , Bacteria/genetics , Fertilizers/analysis , Nitrogen , Nitrous Oxide/analysis , RNA, Ribosomal, 16S/genetics , Soil Microbiology
9.
Plants (Basel) ; 10(4)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917372

ABSTRACT

Improving fertilizer nitrogen (N) use efficiency is essential to increase crop productivity and avoid environmental damage. This study was conducted during four crop cycles of winter wheat under humid Mediterranean conditions (Araba, northern Spain). The effects of N-fertilization splitting and the application of the nitrification inhibitors (NIs) 3,4-dimethylpyrazole phosphate (DMPP) and 2-(3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture (DMPSA) as strategies to improve grain quality were examined. The hypothesis of this study was to test if the partial ammonium nutrition and the reduction of fertilizer losses presumably induced by the application of NIs can modify the grain gliadin and glutenin protein contents and the breadmaking quality (dough rheological properties). Among both NIs assayed, only DMPP showed a slight effect of decreasing the omega gliadin fraction, following splitting either two or three times, although this effect was dependent on the year and was not reflected in terms of dough extensibility. The slight decreases observed in grain quality in terms of dough strength and glutenin content induced by DMPP suggest that DMPSA is more promising in terms of maintaining grain quality. Nonetheless, these poor effects exerted by NI application on grain quality parameters did not lead to changes in the quality parameters defining the flour aptitudes for breadmaking.

10.
J Environ Manage ; 288: 112304, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33773210

ABSTRACT

Enhanced-efficiency nitrogen (N) fertilizers, such as those containing nitrification or urease inhibitors, can mitigate the carbon (C) footprint linked to the production of bioenergy crops through a reduction in direct nitrous oxide (N2O) emissions and indirect N2O losses. These indirect emissions are derived from ammonia (NH3) volatilization, which also have important environmental and health implications. The evaluation of the global warming potential (GWP) of different N sources using site-specific data of yield and direct and indirect emissions is needed for oilseed rape under rainfed semi-arid conditions, especially when meteorological variability is taken into account. Using urea as a N source, the N2O mitigation efficacy of the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT) alone or combined with the nitrification inhibitor 2-(3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture (DMPSA) was evaluated under field conditions in a rainfed oilseed rape (Brassica napus L.) crop. Two additional N sources from calcium ammonium nitrate (CAN), with and without DMPSA, were included. The GWP of the treatments was estimated considering the emissions from inputs, operations and other direct and indirect emissions of greenhouse gases (GHGs), such as methane (CH4) and the volatilization of NH3. We also measured the abundance of key genes involved in nitrification and denitrification to improve the understanding of N2O emissions on a biochemical basis under the conditions of our study. The results show that due to the intense rainfall after fertilization and a rewetting event, N2O losses from fertilizers without inhibitors were greater than those previously reported under Mediterranean conditions, while NH3 losses were low and not affected by the urease inhibitor. The cumulative N2O emissions (which were greatly influenced by a rewetting peak three months after fertilization) from the urea fertilization were significantly higher than those from CAN. The presence of NBPT significantly reduced N2O losses by an average of 71%, with respect to urea. The use of DMPSA with CAN resulted in an abatement of N2O emissions (by 57%) and a significant increase in oil yield in comparison with CAN alone. All inhibitor-based treatments were effective in abating N2O emissions during the rewetting peak. The abundances of the nitrifier and denitrifier communities, especially ammonia-oxidizing bacteria (AOB), significantly decreased relative to the urea or CAN treatments as inhibitors were applied. Under the conditions of our study, the sustainability of a bioenergy crop such as oilseed rape can be improved by using inhibitors because they mitigated N2O emissions and/or enhanced the oil yield.


Subject(s)
Brassica napus , Nitrous Oxide , Agriculture , Fertilizers/analysis , Global Warming , Nitrous Oxide/analysis , Soil
11.
Plants (Basel) ; 10(1)2021 Jan 08.
Article in English | MEDLINE | ID: mdl-33435620

ABSTRACT

Low atmospheric relative humidity (RH) accompanied by elevated air temperature and decreased precipitation are environmental challenges that wheat production will face in future decades. These changes to the atmosphere are causing increases in air vapor pressure deficit (VPD) and low soil water availability during certain periods of the wheat-growing season. The main objective of this study was to analyze the physiological, metabolic, and transcriptional response of carbon (C) and nitrogen (N) metabolism of wheat (Triticum durum cv. Sula) to increases in VPD and soil water stress conditions, either alone or in combination. Plants were first grown in well-watered conditions and near-ambient temperature and RH in temperature-gradient greenhouses until anthesis, and they were then subjected to two different water regimes well-watered (WW) and water-stressed (WS), i.e., watered at 50% of the control for one week, followed by two VPD levels (low, 1.01/0.36 KPa and high, 2.27/0.62 KPa; day/night) for five additional days. Both VPD and soil water content had an important impact on water status and the plant physiological apparatus. While high VPD and water stress-induced stomatal closure affected photosynthetic rates, in the case of plants watered at 50%, high VPD also caused a direct impairment of the RuBisCO large subunit, RuBisCO activase and the electron transport rate. Regarding N metabolism, the gene expression, nitrite reductase (NIR) and transport levels detected in young leaves, as well as determinations of the δ15N and amino acid profiles (arginine, leucine, tryptophan, aspartic acid, and serine) indicated activation of N metabolism and final transport of nitrate to leaves and photosynthesizing cells. On the other hand, under low VPD conditions, a positive effect was only observed on gene expression related to the final step of nitrate supply to photosynthesizing cells, whereas the amount of 15N supplied to the roots that reached the leaves decreased. Such an effect would suggest an impaired N remobilization from other organs to young leaves under water stress conditions and low VPD.

12.
Sci Total Environ ; 752: 141885, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32890835

ABSTRACT

In agriculture, the applied nitrogen (N) can be lost in the environment in different forms because of microbial transformations. It is of special concern the nitrate (NO3-) leaching and the nitrous oxide (N2O) emissions, due to their negative environmental impacts. Nitrification inhibitors (NIs) based on dimethylpyrazole (DMP) are applied worldwide in order to reduce N losses. These compounds delay ammonium (NH4+) oxidation by inhibiting ammonia-oxidizing bacteria (AOB) growth. However, their mechanism of action has not been demonstrated, which represent an important lack of knowledge to use them correctly. In this work, through chemical and biological analysis, we unveil the mechanism of action of the commonly applied 3,4-dimethyl-1H-pyrazole dihydrogen phosphate (DMPP) and the new DMP-based NI, 2-(3,4-dimethyl-1H-pyrazol-1-yl)-succinic acid (DMPSA). Our results show that DMP and DMPSA form complexes with copper (Cu2+) cations, an indispensable cofactor in the nitrification pathway. Three coordination compounds namely [Cu(DMP)4Cl2] (CuDMP1), [Cu(DMP)4SO4]n (CuDMP2) and [Cu(DMPSA)2]·H2O (CuDMPSA) have been synthesized and chemical and structurally characterized. The CuDMPSA complex is more stable than those containing DMP ligands; however, both NIs show the same nitrification inhibition efficiency in soils with different Cu contents, suggesting that the active specie in both cases is DMP. Our soil experiment reveals that the usual application dose is enough to inhibit nitrification within the range of Cu and Zn contents present in agricultural soils, although their effects vary depending on the content of these elements. As a result of AOB inhibition by these NIs, N2O-reducing bacteria seem to be beneficed in Cu-limited soils due to a reduction in the competence. This opens up the possibility to induce N2O reduction to N2 through Cu fertilization. On the other hand, when fertilizing with micronutrients such as Cu and Zn, the use of NIs could be beneficial to counteract the increase of nitrification derived from their application.


Subject(s)
Nitrification , Nitrous Oxide , Agriculture , Fertilizers/analysis , Nitrous Oxide/analysis , Soil , Soil Microbiology
13.
Plants (Basel) ; 9(3)2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32143321

ABSTRACT

The Lluta Valley in Northern Chile is an important agricultural area affected by both salinity and boron (B) toxicity. Zea mays L. amylacea, an ecotype arisen because of the seed selection practiced in this valley, shows a high tolerance to salt and B levels. In the present study the interaction between B and salt was studied after 20 days of treatment at low (100 mM) and high salinity (430 mM NaCl), assessing changes in nitrogen metabolites and in the activity of key nitrogen-assimilating enzymes. Under non-saline conditions, the presence of excessive B favored higher nitrate and ammonium mobilization to leaves, increasing nitrate reductase (NR) activity but not glutamine synthetase (GS). Thus, the increment of nitrogen use efficiency by B application would contribute partially to maintain the biomass production in this ecotype. Positive relationships between NR activity, nitrate, and stomatal conductance were observed in leaves. The increment of major amino acids alanine and serine would indicate a photoprotective role of photorespiration under low-salinity conditions, thus the inhibition of nitrogen assimilation pathway (NR and GS activities) occurred only at high salinity. The role of cytosolic GS regarding the proline accumulation is discussed.

14.
Front Plant Sci ; 11: 632285, 2020.
Article in English | MEDLINE | ID: mdl-33584765

ABSTRACT

Nitrate and ammonium are the main nitrogen sources in agricultural soils. In the last decade, ammonium (NH4 +), a double-sided metabolite, has attracted considerable attention by researchers. Its ubiquitous presence in plant metabolism and its metabolic energy economy for being assimilated contrast with its toxicity when present in high amounts in the external medium. Plant species can adopt different strategies to maintain NH4 + homeostasis, as the maximization of its compartmentalization and assimilation in organic compounds, primarily as amino acids and proteins. In the present study, we report an integrative metabolic response to ammonium nutrition of seven plant species, belonging to four different families: Gramineae (ryegrass, wheat, Brachypodium distachyon), Leguminosae (clover), Solanaceae (tomato), and Brassicaceae (oilseed rape, Arabidopsis thaliana). We use principal component analysis (PCA) and correlations among metabolic and biochemical data from 40 experimental conditions to understand the whole-plant response. The nature of main amino acids is analyzed among species, under the hypothesis that those Asn-accumulating species will show a better response to ammonium nutrition. Given the provision of carbon (C) skeletons is crucial for promotion of the nitrogen assimilation, the role of different anaplerotic enzymes is discussed in relation to ammonium nutrition at a whole-plant level. Among these enzymes, isocitrate dehydrogenase (ICDH) shows to be a good candidate to increase nitrogen assimilation in plants. Overall, metabolic adaptation of different carbon anaplerotic activities is linked with the preference to synthesize Asn or Gln in their organs. Lastly, glutamate dehydrogenase (GDH) reveals as an important enzyme to surpass C limitation during ammonium assimilation in roots, with a disparate collaboration of glutamine synthetase (GS).

15.
Bioresour Technol ; 295: 122267, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31648128

ABSTRACT

Metagenomic and transcriptomic techniques applied to composting could increase our understanding of the overall microbial ecology and could help us to optimise operational conditions which are directly related with economic interest. In this study, the fungal diversity and abundance of two-phase olive mill waste ("alperujo") composting was studied using Illumina MiSeq sequencing and quantitative PCR, respectively. The results showed an increase of the fungal diversity during the process, with Ascomycota being the predominant phylum. Penicillium was the main genera identified at the mesophilic and maturation phases, with Debaryomyces and Sarocladium at the thermophilic phase, respectively. The fungal abundance was increased during composting, which confirms their important role during thermophilic and maturation phases. Some Basidiomycota showed an increased during the process, which showed a positive correlation with the humification parameters. According to that, the genus Cystofilobasidium could be used as a potential fungal biomarker to assess alperujo compost maturation.


Subject(s)
Ascomycota , Basidiomycota , Composting , Olea , Soil
16.
Sci Total Environ ; 718: 134748, 2020 May 20.
Article in English | MEDLINE | ID: mdl-31848057

ABSTRACT

Agricultural sustainability is compromised by nitrogen (N) losses caused by soil microbial activity. Nitrous oxide (N2O) is a potent greenhouse gas (GHG) produced as consequence of nitrification and denitrification processes in soils. Nitrification inhibitors (NI) as 3,4-dimethylpyrazole-succinic acid (DMPSA) are useful tools to reduce these N losses from fertilization. The objective of this work was to test the efficiency of DMPSA in two different tillage management systems, conventional tillage (CT) and no-tillage (NT), in a winter wheat crop under Humid Mediterranean conditions. N fertilizer was applied as ammonium sulphate (AS) with or without DMPSA in a single or split application, including an unfertilized treatment. GHG fluxes (N2O, CO2 and CH4) were measured by the closed chamber method. amoA and nosZI genes were quantified by qPCR as indicators of nitrifying and denitrifying populations. Nitrification was inhibited by DMPSA in both CT and NT, while the higher water filled pore space (WFPS) in NT promoted a better efficiency of DMPSA in this system. This higher efficiency might be due to a greater N2O reduction to N2 as result of the nosZI gene induction. Consequently, DMPSA was able to reduce N2O emissions down to the unfertilized levels in NT. Provided that NT reduced CO2 emissions and maintained crop yield compared to CT, the application DMPSA under NT management is a promising strategy to increase agro-systems sustainability under Humid Mediterranean conditions.


Subject(s)
Nitrification , Agriculture , Fertilizers , Nitrous Oxide , Soil , Succinic Acid
17.
J Agric Food Chem ; 67(31): 8441-8451, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31339045

ABSTRACT

The increase in the atmospheric CO2 concentration is predicted to influence wheat production and grain quality and nutritional properties. In the present study, durum wheat (Triticum durum Desf. cv. Sula) was grown under two different CO2 (400 versus 700 µmol mol-1) concentrations to examine effects on the crop yield and grain quality at different phenological stages (from grain filling to maturity). Exposure to elevated CO2 significantly increased aboveground biomass and grain yield components. Growth at elevated CO2 diminished the elemental N content as well as protein and free amino acids, with a typical decrease in glutamine, which is the most represented amino acid in grain proteins. Such a general decrease in nitrogenous compounds was associated with altered kinetics of protein accumulation, N remobilization, and N partitioning. Our results highlight important modifications of grain metabolism that have implications for its nutritional quality.


Subject(s)
Carbon Dioxide/metabolism , Seeds/growth & development , Triticum/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Carbon Dioxide/analysis , Kinetics , Plant Proteins/chemistry , Plant Proteins/metabolism , Seeds/chemistry , Seeds/metabolism , Triticum/chemistry , Triticum/growth & development
18.
Sci Rep ; 9(1): 8925, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222161

ABSTRACT

Proper carbon (C) supply is essential for nitrogen (N) assimilation especially when plants are grown under ammonium (NH4+) nutrition. However, how C and N metabolic fluxes adapt to achieve so remains uncertain. In this work, roots of wheat (Triticum aestivum L.) plants grown under exclusive NH4+ or nitrate (NO3-) supply were incubated with isotope-labelled substrates (15NH4+, 15NO3-, or [13C]Pyruvate) to follow the incorporation of 15N or 13C into amino acids and organic acids. Roots of plants adapted to ammonium nutrition presented higher capacity to incorporate both 15NH4+ and 15NO3- into amino acids, thanks to the previous induction of the NH4+ assimilative machinery. The 15N label was firstly incorporated into [15N]Gln vía glutamine synthetase; ultimately leading to [15N]Asn accumulation as an optimal NH4+ storage. The provision of [13C]Pyruvate led to [13C]Citrate and [13C]Malate accumulation and to rapid [13C]2-OG consumption for amino acid synthesis and highlighted the importance of the anaplerotic routes associated to tricarboxylic acid (TCA) cycle. Taken together, our results indicate that root adaptation to ammonium nutrition allowed efficient assimilation of N thanks to the promotion of TCA cycle open flux modes in order to sustain C skeleton availability for effective NH4+ detoxification into amino acids.


Subject(s)
Adaptation, Physiological , Ammonium Compounds/metabolism , Carbon/metabolism , Citric Acid Cycle , Isotope Labeling , Plant Roots/physiology , Triticum/physiology , Nitrates/metabolism , Plant Roots/metabolism , Triticum/metabolism
19.
Front Plant Sci ; 10: 597, 2019.
Article in English | MEDLINE | ID: mdl-31178873

ABSTRACT

While nitrogen (N) derived from ammonium would be energetically less expensive than nitrate-derived N, the use of ammonium-based fertilizer is limited by the potential for toxicity symptoms. Nevertheless, previous studies have shown that exposure to elevated CO2 favors ammonium assimilation in plants. However, little is known about the impact of different forms of N fertilizer on stomatal opening and their consequent effects on CO2 and H2O diffusion in wheat plants exposed to ambient and elevated CO2. In this article, we have examined the response of the photosynthetic machinery of durum wheat (Triticum durum, var. Amilcar) grown with different types of N fertilizer (NO3 -, NH4 +, and NH4NO3) at 400 versus 700 ppm of CO2. Alongside gas exchange and photochemical parameters, the expression of genes involved in CO2 (PIP1.1 and PIP2.3) and H2O (TIP1) diffusion as well as key C and N primary metabolism enzymes and metabolites were studied. Our results show that at 400 ppm CO2, wheat plants fertilized with ammonium as the N source had stress symptoms and a strong reduction in stomatal conductance, which negatively affected photosynthetic rates. The higher levels of PIP1.1 and PIP2.3 expression in ammonium-fertilized plants at 400 ppm CO2 might reflect the need to overcome limitations to the CO2 supply to chloroplasts due to restrictions in stomatal conductance. This stomatal limitation might be associated with a strategy to reduce ammonium transport toward leaves. On the other hand, ammonium-fertilized plants at elevated CO2 did not show stress symptoms, and no differences were detected in stomatal opening or water use efficiency (WUE). Moreover, similar gene expression of the aquaporins TIP1, PIP1.1, and PIP2.3 in ammonium-fertilized plants grown at 700 ppm compared to nitrate and ammonium nitrate plants would suggest that an adjustment in CO2 and H2O diffusion is not required. Therefore, in the absence of a stress context triggered by elevated CO2, ammonium- and ammonium nitrate-fertilized plants were able to increase their photosynthetic rates, which were translated eventually into higher leaf protein content.

20.
Sci Total Environ ; 660: 1201-1209, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30743915

ABSTRACT

Nitrogen fertilization is a major force in global greenhouse gases emissions and causes environmental contamination through nitrate leaching. The use of nitrification inhibitors has been proven successful to mitigate these effects. However, there is an increasing concern about the undesired effects that their potential persistence in the soil or accumulation in plants may provoke. In this study, we first exposed Lotus japonicus plants to high amounts of 3,4 dimethylpyrazole phosphate (DMPP) and 2-(N-3,4-dimethyl-1H-pyrazol-1-yl) succinic acid isomeric mixture (DMPSA) nitrification inhibitors. Exposure to doses higher than 1 mg·L-1 provoked DMPP accumulation mostly in the aerial part, while DMPSA was only detected from 10 mg·L-1 and nearly no translocation. To evaluate the effect that DMPP accumulation in leaves may provoke on plant performance we combined a transcriptome, proteome, and physiological analysis in plants treated with 10 mg/ L of DMPP. This treatment provoked changes in the expression of 229 genes and 59 proteins. Overall, we evidence that when DMPP accumulates in leaves it induces stress responses, notably provoking changes in cell redox balance, hormone signaling, protein synthesis and turnover and carbon and nitrogen metabolism.


Subject(s)
Lotus/drug effects , Nitrification/drug effects , Pyrazoles/toxicity , Carbon/metabolism , Fertilizers , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Lotus/genetics , Lotus/metabolism , Nitrogen/metabolism , Oxidation-Reduction/drug effects , Plant Growth Regulators/metabolism , Plant Leaves , Pyrazoles/metabolism , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...