Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Ann Rev Mar Sci ; 16: 443-466, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-37552896

ABSTRACT

The holobiont concept (i.e., multiple living beings in close symbiosis with one another and functioning as a unit) is revolutionizing our understanding of biology, especially in marine systems. The earliest marine holobiont was likely a syntrophic partnership of at least two prokaryotic members. Since then, symbiosis has enabled marine organisms to conquer all ocean habitats through the formation of holobionts with a wide spectrum of complexities. However, most scientific inquiries have focused on isolated organisms and their adaptations to specific environments. In this review, we attempt to illustrate why a holobiont perspective-specifically, the study of how numerous organisms form a discrete ecological unit through symbiosis-will be a more impactful strategy to advance our understanding of the ecology and evolution of marine life. We argue that this approach is instrumental in addressing the threats to marine biodiversity posed by the current global environmental crisis.


Subject(s)
Biodiversity , Symbiosis
2.
PeerJ ; 11: e15023, 2023.
Article in English | MEDLINE | ID: mdl-37151292

ABSTRACT

Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.


Subject(s)
Coral Reefs , Dinoflagellida , Genetic Variation , Dinoflagellida/classification , Dinoflagellida/genetics , Phylogeny , Consensus , Anthozoa , Symbiosis
3.
Trends Microbiol ; 30(9): 831-840, 2022 09.
Article in English | MEDLINE | ID: mdl-35227551

ABSTRACT

Modern microbial taxonomy generally relies on the use of single marker genes or sets of concatenated genes to generate a framework for the delineation and classification of organisms at different taxonomic levels. However, given that DNA is the 'blueprint of life', and hence the ultimate arbiter of taxonomy, classification systems should attempt to use as much of the blueprint as possible to capture a comprehensive phylogenetic signal. Recent analysis of whole-genome sequences from coral reef symbionts (dinoflagellates of the family Symbiodiniaceae) and other microalgal groups has uncovered extensive divergence not recognised by current algal taxonomic approaches. In the era of 'sequence everything', we argue that whole-genome data are pivotal to guide informed taxonomic inference, particularly for microbial eukaryotes.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Anthozoa/genetics , Coral Reefs , Dinoflagellida/genetics , Phylogeny , Symbiosis
4.
Front Microbiol ; 12: 644089, 2021.
Article in English | MEDLINE | ID: mdl-33936002

ABSTRACT

Ethanol production from sugarcane is a key renewable fuel industry in Brazil. Major drivers of this alcoholic fermentation are Saccharomyces cerevisiae strains that originally were contaminants to the system and yet prevail in the industrial process. Here we present newly sequenced genomes (using Illumina short-read and PacBio long-read data) of two monosporic isolates (H3 and H4) of the S. cerevisiae PE-2, a predominant bioethanol strain in Brazil. The assembled genomes of H3 and H4, together with 42 draft genomes of sugarcane-fermenting (fuel ethanol plus cachaça) strains, were compared against those of the reference S288C and diverse S. cerevisiae. All genomes of bioethanol yeasts have amplified SNO2(3)/SNZ2(3) gene clusters for vitamin B1/B6 biosynthesis, and display ubiquitous presence of a particular family of SAM-dependent methyl transferases, rare in S. cerevisiae. Widespread amplifications of quinone oxidoreductases YCR102C/YLR460C/YNL134C, and the structural or punctual variations among aquaporins and components of the iron homeostasis system, likely represent adaptations to industrial fermentation. Interesting is the pervasive presence among the bioethanol/cachaça strains of a five-gene cluster (Region B) that is a known phylogenetic signature of European wine yeasts. Combining genomes of H3, H4, and 195 yeast strains, we comprehensively assessed whole-genome phylogeny of these taxa using an alignment-free approach. The 197-genome phylogeny substantiates that bioethanol yeasts are monophyletic and closely related to the cachaça and wine strains. Our results support the hypothesis that biofuel-producing yeasts in Brazil may have been co-opted from a pool of yeasts that were pre-adapted to alcoholic fermentation of sugarcane for the distillation of cachaça spirit, which historically is a much older industry than the large-scale fuel ethanol production.

5.
Methods Mol Biol ; 2242: 69-76, 2021.
Article in English | MEDLINE | ID: mdl-33961218

ABSTRACT

Inferring phylogenetic relationships among hundreds or thousands of microbial genomes is an increasingly common task. The conventional phylogenetic approach adopts multiple sequence alignment to compare gene-by-gene, concatenated multigene or whole-genome sequences, from which a phylogenetic tree would be inferred. These alignments follow the implicit assumption of full-length contiguity among homologous sequences. However, common events in microbial genome evolution (e.g., structural rearrangements and genetic recombination) violate this assumption. Moreover, aligning hundreds or thousands of sequences is computationally intensive and not scalable to the rate at which genome data are generated. Therefore, alignment-free methods present an attractive alternative strategy. Here we describe a scalable alignment-free strategy to infer phylogenetic relationships using complete genome sequences of bacteria and archaea, based on short, subsequences of length k (k-mers). We describe how this strategy can be extended to infer evolutionary relationships beyond a tree-like structure, to better capture both vertical and lateral signals of microbial evolution.


Subject(s)
Archaea/genetics , Bacteria/genetics , DNA, Archaeal/genetics , DNA, Bacterial/genetics , Genome, Archaeal , Genome, Bacterial , Genomics , Phylogeny , Archaea/classification , Bacteria/classification , Databases, Genetic , Evolution, Molecular , Research Design , Workflow
6.
BMC Biol ; 19(1): 73, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33849527

ABSTRACT

BACKGROUND: Dinoflagellates in the family Symbiodiniaceae are important photosynthetic symbionts in cnidarians (such as corals) and other coral reef organisms. Breakdown of the coral-dinoflagellate symbiosis due to environmental stress (i.e. coral bleaching) can lead to coral death and the potential collapse of reef ecosystems. However, evolution of Symbiodiniaceae genomes, and its implications for the coral, is little understood. Genome sequences of Symbiodiniaceae remain scarce due in part to their large genome sizes (1-5 Gbp) and idiosyncratic genome features. RESULTS: Here, we present de novo genome assemblies of seven members of the genus Symbiodinium, of which two are free-living, one is an opportunistic symbiont, and the remainder are mutualistic symbionts. Integrating other available data, we compare 15 dinoflagellate genomes revealing high sequence and structural divergence. Divergence among some Symbiodinium isolates is comparable to that among distinct genera of Symbiodiniaceae. We also recovered hundreds of gene families specific to each lineage, many of which encode unknown functions. An in-depth comparison between the genomes of the symbiotic Symbiodinium tridacnidorum (isolated from a coral) and the free-living Symbiodinium natans reveals a greater prevalence of transposable elements, genetic duplication, structural rearrangements, and pseudogenisation in the symbiotic species. CONCLUSIONS: Our results underscore the potential impact of lifestyle on lineage-specific gene-function innovation, genome divergence, and the diversification of Symbiodinium and Symbiodiniaceae. The divergent features we report, and their putative causes, may also apply to other microbial eukaryotes that have undergone symbiotic phases in their evolutionary history.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Anthozoa/genetics , Coral Reefs , Dinoflagellida/genetics , Ecosystem , Genetic Variation , Genome/genetics
7.
BMC Biol ; 18(1): 56, 2020 05 24.
Article in English | MEDLINE | ID: mdl-32448240

ABSTRACT

BACKGROUND: Dinoflagellates are taxonomically diverse and ecologically important phytoplankton that are ubiquitously present in marine and freshwater environments. Mostly photosynthetic, dinoflagellates provide the basis of aquatic primary production; most taxa are free-living, while some can form symbiotic and parasitic associations with other organisms. However, knowledge of the molecular mechanisms that underpin the adaptation of these organisms to diverse ecological niches is limited by the scarce availability of genomic data, partly due to their large genome sizes estimated up to 250 Gbp. Currently available dinoflagellate genome data are restricted to Symbiodiniaceae (particularly symbionts of reef-building corals) and parasitic lineages, from taxa that have smaller genome size ranges, while genomic information from more diverse free-living species is still lacking. RESULTS: Here, we present two draft diploid genome assemblies of the free-living dinoflagellate Polarella glacialis, isolated from the Arctic and Antarctica. We found that about 68% of the genomes are composed of repetitive sequence, with long terminal repeats likely contributing to intra-species structural divergence and distinct genome sizes (3.0 and 2.7 Gbp). For each genome, guided using full-length transcriptome data, we predicted > 50,000 high-quality protein-coding genes, of which ~40% are in unidirectional gene clusters and ~25% comprise single exons. Multi-genome comparison unveiled genes specific to P. glacialis and a common, putatively bacterial origin of ice-binding domains in cold-adapted dinoflagellates. CONCLUSIONS: Our results elucidate how selection acts within the context of a complex genome structure to facilitate local adaptation. Because most dinoflagellate genes are constitutively expressed, Polarella glacialis has enhanced transcriptional responses via unidirectional, tandem duplication of single-exon genes that encode functions critical to survival in cold, low-light polar environments. These genomes provide a foundational reference for future research on dinoflagellate evolution.


Subject(s)
Dinoflagellida/genetics , Exons , Genome, Protozoan , Tandem Repeat Sequences , Transcriptome , Adaptation, Biological , Genes, Protozoan
8.
J Phycol ; 56(1): 6-10, 2020 02.
Article in English | MEDLINE | ID: mdl-31713873

ABSTRACT

Comparative algal genomics often relies on predicted genes from de novo assembled genomes. However, the artifacts introduced by different gene-prediction approaches, and their impact on comparative genomic analysis remain poorly understood. Here, using available genome data from six dinoflagellate species in the Symbiodiniaceae, we identified methodological biases in the published genes that were predicted using different approaches and putative contaminant sequences in the published genome assemblies. We developed and applied a comprehensive customized workflow to predict genes from these genomes. The observed variation among predicted genes resulting from our workflow agreed with current understanding of phylogenetic relationships among these taxa, whereas the variation among the previously published genes was largely biased by the distinct approaches used in each instance. Importantly, these biases affect the inference of homologous gene families and synteny among genomes, thus impacting biological interpretation of these data. Our results demonstrate that a consistent gene-prediction approach is critical for comparative analysis of dinoflagellate genomes.


Subject(s)
Dinoflagellida , Genome , Phylogeny , Synteny
9.
Trends Ecol Evol ; 34(9): 799-806, 2019 09.
Article in English | MEDLINE | ID: mdl-31084944

ABSTRACT

Coral reefs are sustained by symbioses between corals and symbiodiniacean dinoflagellates. These symbioses vary in the extent of their permanence in and specificity to the host. Although dinoflagellates are primarily free-living, Symbiodiniaceae diversified mainly as symbiotic lineages. Their genomes reveal conserved symbiosis-related gene functions and high sequence divergence. However, the evolutionary mechanisms that underpin the transition from the free-living lifestyle to symbiosis remain poorly understood. Here, we discuss the genome evolution of Symbiodiniaceae in diverse ecological niches across the broad spectrum of symbiotic associations, from free-living to putative obligate symbionts. We pose key questions regarding genome evolution vis-à-vis the transition of dinoflagellates from free-living to symbiotic and propose strategies for future research to better understand coral-dinoflagellate and other eukaryote-eukaryote symbioses.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Coral Reefs , Genome , Symbiosis
12.
Commun Biol ; 1: 95, 2018.
Article in English | MEDLINE | ID: mdl-30271976

ABSTRACT

Symbiosis between dinoflagellates of the genus Symbiodinium and reef-building corals forms the trophic foundation of the world's coral reef ecosystems. Here we present the first draft genome of Symbiodinium goreaui (Clade C, type C1: 1.03 Gbp), one of the most ubiquitous endosymbionts associated with corals, and an improved draft genome of Symbiodinium kawagutii (Clade F, strain CS-156: 1.05 Gbp) to further elucidate genomic signatures of this symbiosis. Comparative analysis of four available Symbiodinium genomes against other dinoflagellate genomes led to the identification of 2460 nuclear gene families (containing 5% of Symbiodinium genes) that show evidence of positive selection, including genes involved in photosynthesis, transmembrane ion transport, synthesis and modification of amino acids and glycoproteins, and stress response. Further, we identify extensive sets of genes for meiosis and response to light stress. These draft genomes provide a foundational resource for advancing our understanding of Symbiodinium biology and the coral-algal symbiosis.

13.
Sci Rep ; 7(1): 15021, 2017 11 03.
Article in English | MEDLINE | ID: mdl-29101370

ABSTRACT

Symbiodinium is best-known as the photosynthetic symbiont of corals, but some clades are symbiotic in other organisms or include free-living forms. Identifying similarities and differences among these clades can help us understand their relationship with corals, and thereby inform on measures to manage coral reefs in a changing environment. Here, using sequences from 24 publicly available transcriptomes and genomes of Symbiodinium, we assessed 78,389 gene families in Symbiodinium clades and the immediate outgroup Polarella glacialis, and identified putative overrepresented functions in gene families that (1) distinguish Symbiodinium from other members of Order Suessiales, (2) are shared by all of the Symbiodinium clades for which we have data, and (3) based on available information, are specific to each clade. Our findings indicate that transmembrane transport, mechanisms of response to reactive oxygen species, and protection against UV radiation are functions enriched in all Symbiodinium clades but not in P. glacialis. Enrichment of these functions indicates the capability of Symbiodinium to establish and maintain symbiosis, and to respond and adapt to its environment. The observed differences in lineage-specific gene families imply extensive genetic divergence among clades. Our results provide a platform for future investigation of lineage- or clade-specific adaptation of Symbiodinium to their environment.


Subject(s)
Adaptation, Physiological/genetics , Dinoflagellida/genetics , Genome , Symbiosis/genetics , Transcriptome , Photosynthesis/genetics
14.
FEMS Microbiol Ecol ; 79(3): 619-37, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22092516

ABSTRACT

Microbial symbionts form abundant and diverse components of marine sponge holobionts, yet the ecological and evolutionary factors that dictate their community structure are unresolved. Here, we characterized the bacterial symbiont communities of three sympatric host species in the genus Ircinia from the NW Mediterranean Sea, using electron microscopy and replicated 16S rRNA gene sequence clone libraries. All Ircinia host species harbored abundant and phylogenetically diverse symbiont consortia, comprised primarily of sequences related to other sponge-derived microorganisms. Community-level analyses of bacterial symbionts revealed host species-specific genetic differentiation and structuring of Ircinia-associated microbiota. Phylogenetic analyses of host sponges showed a close evolutionary relationship between Ircinia fasciculata and Ircinia variabilis, the two host species exhibiting more similar symbiont communities. In addition, several bacterial operational taxonomic units were shared between I. variabilis and Ircinia oros, the two host species inhabiting semi-sciophilous communities in more cryptic benthic habitats, and absent in I. fasciculata, which occurs in exposed, high-irradiance habitats. The generalist nature of individual symbionts and host-specific structure of entire communities suggest that: (1) a 'specific mix of generalists' framework applies to bacterial symbionts in Ircinia hosts and (2) factors specific to each host species contribute to the distinct symbiont mix observed in Ircinia hosts.


Subject(s)
Bacteria/classification , Porifera/microbiology , Animals , Bacteria/genetics , Bacteria/growth & development , Base Sequence , Biodiversity , Genes, rRNA , Genetic Variation , Mediterranean Sea , Molecular Sequence Data , Phylogeny , Porifera/classification , Porifera/genetics , Porifera/ultrastructure , RNA, Ribosomal, 16S/genetics , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...