Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 369: 128431, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36470497

ABSTRACT

A native cyanobacterial strain, Desertifilum tharense UAM-C/S02, was studied as a possible C-phycocyanin (C-PC) producer. Photosynthetic activity (PA) assays through oxygen production determined the proper temperature and range of irradiances to be tested in a stirred tank photobioreactor. The highest C-PC productivity (97 mg L-1 d-1), with a yield of 86.46 mgC-PC gB-1 was obtained at 730 µmol photons m-2 s-1 with a biomass productivity of 608 mg L-1 d-1 and the CO2 fixation rate was 1,194  mg L-1 d-1. The 1.81 crude extract purity value is the highest reported for this genus, which was improved to biomarker-grade purity after a two-step purification strategy comprising precipitation with ammonium sulfate, followed by dialysis. The purified C-PC was almost entirely radical-free using 1 mg mL-1, which validates its potential use in therapeutic formulations.


Subject(s)
Antioxidants , Phycocyanin , Renal Dialysis , Fresh Water
2.
J Phycol ; 57(6): 1699-1720, 2021 12.
Article in English | MEDLINE | ID: mdl-34289115

ABSTRACT

A number of heterocytous, mat-forming, tapering cyanobacteria in Rivulariaceae have recently been observed in both the Atlantic and Pacific coasts in the rocky intertidal and supratidal zones. These belong to the genera Nunduva, Kyrtuthrix, and Phyllonema and have been the subject of several recent studies. Herein, two new species of Nunduva (N. komarkovae and N. sanagustinensis) and two new species of Kyrtuthrix (K. munecosensis and K. totonaca) are characterized and described from the coasts of Mexico. Genetic separation based on the 16S-23S ITS region was pronounced (>10% in all comparisons). Morphological differences between all existing species in these two genera were also observed, but the group is morphologically complex, and these taxa are considered pseudocryptic. Nunduva and Kyrtuthrix remain morphologically and phylogenetically separate even with the addition of new species. However, how long will this remain the case? Many new genera and species of cyanobacteria have recently been described. Will the taxonomy of cyanobacteria eventually become saturated? Will we start to see multiple populations for the same cryptic species, or will future taxonomists collapse multiple species into fewer species, or multiple genera into single genera. The description of even more Nunduva and Kyrtuthrix species causes us to pause and evaluate the future of cyanobacterial taxonomy. These same questions are faced by algal taxonomists studying other phyla, and the resolution may ultimately be similar.


Subject(s)
Cyanobacteria , Cyanobacteria/genetics , Mexico , Phylogeny , RNA, Ribosomal, 16S
3.
Bioresour Technol ; 337: 125508, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34320776

ABSTRACT

The photoautotrophic poly(3-hydroxybutyrate) (PHB) production by cyanobacteria is an attractive option as it only requires CO2 and light. In this work, a new wild-type strain producing PHB, Synechococcus elongatus UAM-C/S03, was identified using a polyphasic approach. The strain was cultured in a photobioreactor operated under N-sufficiency conditions at different pH values (7 to 11) and fed with CO2 on demand. We also evaluated the production of PHB under N-starving conditions. Highest biomass productivity, 324 mg L-1 d-1, and CO2 capture, 674 mg L-1 d-1, were obtained at pH 7 and under N-sufficiency conditions. The strain accumulated 29.42% of PHB in dry cell weight (DCW) under N-starvation conditions without pH control, and highest PHB productivity was 58.10 mg L-1 d-1. The highest carbohydrate content registered at pH 8, 50.84% in DCW, along with a release of carbon-based organic compounds, suggested the presence of exopolysaccharides in the culture medium.


Subject(s)
Hydroxybutyrates , Synechococcus , 3-Hydroxybutyric Acid , Extreme Environments , Polyesters
4.
J Phycol ; 55(4): 898-911, 2019 08.
Article in English | MEDLINE | ID: mdl-31012104

ABSTRACT

A population of Desertifilum (Cyanobacteria, Oscillatoriales) from an oligotrophic desertic biotope was isolated and characterized using a polyphasic approach including molecular, morphological, and ecological information. The population was initially assumed to be a new species based on ecological and biogeographic separation from other existing species, however, phylogenetic analyses based on sequences of the 16S rRNA gene and 16S-23S ITS region, placed this strain clearly within the type species, Desertifilum tharense. Comparative analysis of morphology, 16S rRNA gene similarity, 16S-23S ITS secondary structure, and percent dissimilarity of the ITS regions for all characterized strains supports placing the six Desertifilum strains (designated as PD2001/TDC17, UAM-C/S02, CHAB7200, NapGTcm17, IPPAS B-1220, and PMC 872.14) into D. tharense. The recognition of Desertifilum salkalinema and Desertifilum dzianense is not supported, although our analysis does support continued recognition of Desertifilum fontinale. Pragmatic criteria for recognition of closely related species are proposed based on this study and others, and more rigorous review of future taxonomic papers is recommended.


Subject(s)
Cyanobacteria , DNA, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA
5.
J Phycol ; 54(5): 638-652, 2018 10.
Article in English | MEDLINE | ID: mdl-30055049

ABSTRACT

Two untapered, heterocytous species were observed and collected from the intertidal and supratidal zones of the Mexican coastline of the Pacific Ocean near Oaxaca and from the Gulf of Mexico. These populations were highly similar in morphology to the freshwater taxon Petalonema incrustans in the Scytonemataceae. However, 16S rRNA sequence data and phylogenetic analysis indicated that they were sister taxa to the epiphyllic, Brazilian species Phyllonema aveceniicola in the Rivulariaceae, described from culture material. While genetic identity between the two new species was high, they differed significantly in morphology, 16S rRNA gene sequence identity, and sequence and structure of the 16S-23S ITS region. Their morphology differed markedly from the generitype of the previously monotypic Phyllonema, which has tapered, heteropolar, single-false branched trichomes with very thin or absent sheath. The two new species, Phyllonema ansata and Phyllonema tangolundensis, described from both culture and environmental material, have untapered, isopolar, geminately false branched trichomes with thick, lamellated sheaths, differences so significant that the species would not be placed in Phyllonema without molecular corroboration. The morphological differences are so significant that a formal emendation of the genus is required. These taxa provide a challenge to algal taxonomy because the morphological differences are such that one would logically conclude that they represent different genera, but the phylogenetic evidence for including them all in the same genus is conclusive. This conclusion is counter to the current trend in algal taxonomy in which taxa with minor morphological differences have been repeatedly placed in separate genera based primarily upon DNA sequence evidence.


Subject(s)
Cyanobacteria/classification , Cyanobacteria/cytology , Algal Proteins/analysis , Cyanobacteria/genetics , Cyanobacteria/ultrastructure , DNA, Ribosomal Spacer/analysis , Mexico , Phylogeny , Protein Structure, Secondary , RNA, Algal/analysis , RNA, Ribosomal, 16S/analysis , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...