Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Int J Biol Sci ; 20(7): 2339-2355, 2024.
Article in English | MEDLINE | ID: mdl-38725853

ABSTRACT

Chronic cholestatic damage is associated to both accumulation of cytotoxic levels of bile acids and expansion of adult hepatic progenitor cells (HPC) as part of the ductular reaction contributing to the regenerative response. Here, we report a bile acid-specific cytotoxic response in mouse HPC, which is partially impaired by EGF signaling. Additionally, we show that EGF synergizes with bile acids to trigger inflammatory signaling and NLRP3 inflammasome activation in HPC. Aiming at understanding the impact of this HPC specific response on the liver microenvironment we run a proteomic analysis of HPC secretome. Data show an enrichment in immune and TGF-ß regulators, ECM components and remodeling proteins in HPC secretome. Consistently, HPC-derived conditioned medium promotes hepatic stellate cell (HSC) activation and macrophage M1-like polarization. Strikingly, EGF and bile acids co-treatment leads to profound changes in the secretome composition, illustrated by an abolishment of HSC activating effect and by promoting macrophage M2-like polarization. Collectively, we provide new specific mechanisms behind HPC regulatory action during cholestatic liver injury, with an active role in cellular interactome and inflammatory response regulation. Moreover, findings prove a key contribution for EGFR signaling jointly with bile acids in HPC-mediated actions.


Subject(s)
Bile Acids and Salts , ErbB Receptors , Inflammation , Mice, Inbred C57BL , Signal Transduction , Animals , Bile Acids and Salts/metabolism , ErbB Receptors/metabolism , Mice , Inflammation/metabolism , Stem Cells/metabolism , Liver/metabolism , Liver/pathology , Male , Proteomics , Macrophages/metabolism , Hepatic Stellate Cells/metabolism
2.
Methods Mol Biol ; 2769: 87-98, 2024.
Article in English | MEDLINE | ID: mdl-38315391

ABSTRACT

The ectopic xenograft mouse model of cancer is a commonly employed tool for in vivo investigations, particularly for studying cell tumorigenicity and testing the efficacy and tolerability of systemic or local anti-cancer therapies. The model displays advantageous features with an easy-access to visualize and monitor tumor growth in real-time with a caliper. Although the tumor development occurs in an ectopic location, the histology of the tumor resembles that of human cancer upon pathological examination. This suggests that when human malignant cells are transplanted into immunocompromised mice, they can educate and attract murine cells from the surrounding environment to recapitulate a tumor structure. The experimental protocol for ectopic xenograft models is straightforward, making them reproducible, cost-effective, and conductive to shorter experimental durations. Here, we detail the utilization of ectopic xenograft models in studying biliary tract cancers (BTC), which involves subcutaneously grafting human BTC cell lines originating from different biliary tree locations onto immunocompromised nude mice.


Subject(s)
Biliary Tract Neoplasms , Humans , Animals , Mice , Mice, Nude , Heterografts , Xenograft Model Antitumor Assays , Cell Line, Tumor , Biliary Tract Neoplasms/metabolism , Biliary Tract Neoplasms/pathology , Models, Theoretical
3.
Liver Int ; 43(12): 2776-2793, 2023 12.
Article in English | MEDLINE | ID: mdl-37804055

ABSTRACT

BACKGROUND & AIMS: The class I- phosphatidylinositol-3 kinases (PI3Ks) signalling is dysregulated in almost all human cancers whereas the isoform-specific roles remain poorly investigated. We reported that the isoform δ (PI3Kδ) regulated epithelial cell polarity and plasticity and recent developments have heightened its role in hepatocellular carcinoma (HCC) and solid tumour progression. However, its role in cholangiocarcinoma (CCA) still lacks investigation. APPROACH & RESULTS: Immunohistochemical analyses of CCA samples reveal a high expression of PI3Kδ in the less differentiated CCA. The RT-qPCR and immunoblot analyses performed on CCA cells stably overexpressing PI3Kδ using lentiviral construction reveal an increase of mesenchymal and stem cell markers and the pluripotency transcription factors. CCA cells stably overexpressing PI3Kδ cultured in 3D culture display a thick layer of ECM at the basement membrane and a wide single lumen compared to control cells. Similar data are observed in vivo, in xenografted tumours established with PI3Kδ-overexpressing CCA cells in immunodeficient mice. The expression of mesenchymal and stemness genes also increases and tumour tissue displays necrosis and fibrosis, along with a prominent angiogenesis and lymphangiogenesis, as in mice liver of AAV8-based-PI3Kδ overexpression. These PI3Kδ-mediated cell morphogenesis and stroma remodelling were dependent on TGFß/Src/Notch signalling. Whole transcriptome analysis of PI3Kδ using the cancer cell line encyclopedia allows the classification of CCA cells according to cancer progression. CONCLUSIONS: Overall, our results support the critical role of PI3Kδ in the progression and aggressiveness of CCA via TGFß/src/Notch-dependent mechanisms and open new directions for the classification and treatment of CCA patients.


Subject(s)
Bile Duct Neoplasms , Carcinoma, Hepatocellular , Cholangiocarcinoma , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/pathology , Phosphatidylinositol 3-Kinase , Phosphatidylinositol 3-Kinases/metabolism , Liver Neoplasms/pathology , Cholangiocarcinoma/pathology , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/metabolism , Fibrosis , Transforming Growth Factor beta , Protein Isoforms , Cell Line, Tumor
4.
JHEP Rep ; 5(4): 100649, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36923239

ABSTRACT

Background & Aims: Gallbladder enlargement is common in patients with primary sclerosing cholangitis (PSC). The gallbladder may confer hepatoprotection against bile acid overload, through the sequestration and cholecystohepatic shunt of bile acids. The aim of this study was to assess the potential impact of the gallbladder on disease features and bile acid homeostasis in PSC. Methods: Patients with PSC from a single tertiary center who underwent liver MRI with three-dimensional cholangiography and concomitant analyses of serum bile acids were included. Gallbladder volume was measured by MRI and a cut-off of 50 ml was used to define gallbladder enlargement. Bile acid profiles and PSC severity, as assessed by blood tests and MRI features, were compared among patients according to gallbladder size (enlarged vs. normal-sized) or presence (removed vs. conserved). The impact of cholecystectomy was also assessed in the Abcb4 knockout mouse model of PSC. Results: Sixty-one patients with PSC, all treated with ursodeoxycholic acid (UDCA), were included. The gallbladder was enlarged in 30 patients, whereas 11 patients had been previously cholecystectomized. Patients with enlarged gallbladders had significantly lower alkaline phosphatase, a lower tauro-vs. glycoconjugate ratio and a higher UDCA vs. total bile acid ratio compared to those with normal-sized gallbladders. In addition, gallbladder volume negatively correlated with the hydrophobicity index of bile acids. Cholecystectomized patients displayed significantly higher aspartate aminotransferase and more severe bile duct strictures and dilatations compared to those with conserved gallbladder. In the Abcb4 knockout mice, cholecystectomy caused an increase in hepatic bile acid content and in circulating secondary bile acids, and an aggravation in cholangitis, inflammation and liver fibrosis. Conclusion: Altogether, our findings indicate that the gallbladder fulfills protective functions in PSC. Impact and implications: In patients with primary sclerosing cholangitis (PSC), gallbladder status impacts on bile acid homeostasis and disease features. We found evidence of lessened bile acid toxicity in patients with PSC and enlarged gallbladders and of increased disease severity in those who were previously cholecystectomized. In the Abcb4 knockout mouse model of PSC, cholecystectomy causes an aggravation of cholangitis and liver fibrosis. Overall, our results suggest that the gallbladder plays a protective role in PSC.

5.
Nat Rev Gastroenterol Hepatol ; 20(7): 462-480, 2023 07.
Article in English | MEDLINE | ID: mdl-36755084

ABSTRACT

Cholangiocarcinoma (CCA) is a rare malignancy that develops at any point along the biliary tree. CCA has a poor prognosis, its clinical management remains challenging, and effective treatments are lacking. Therefore, preclinical research is of pivotal importance and necessary to acquire a deeper understanding of CCA and improve therapeutic outcomes. Preclinical research involves developing and managing complementary experimental models, from in vitro assays using primary cells or cell lines cultured in 2D or 3D to in vivo models with engrafted material, chemically induced CCA or genetically engineered models. All are valuable tools with well-defined advantages and limitations. The choice of a preclinical model is guided by the question(s) to be addressed; ideally, results should be recapitulated in independent approaches. In this Consensus Statement, a task force of 45 experts in CCA molecular and cellular biology and clinicians, including pathologists, from ten countries provides recommendations on the minimal criteria for preclinical models to provide a uniform approach. These recommendations are based on two rounds of questionnaires completed by 35 (first round) and 45 (second round) experts to reach a consensus with 13 statements. An agreement was defined when at least 90% of the participants voting anonymously agreed with a statement. The ultimate goal was to transfer basic laboratory research to the clinics through increased disease understanding and to develop clinical biomarkers and innovative therapies for patients with CCA.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Bile Duct Neoplasms/therapy , Bile Duct Neoplasms/metabolism , Cholangiocarcinoma/etiology , Cholangiocarcinoma/therapy , Consensus , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology
6.
Drug Resist Updat ; 64: 100863, 2022 09.
Article in English | MEDLINE | ID: mdl-36063655

ABSTRACT

The Epidermal Growth Factor Receptor (EGFR) has been targeted through the development of selective tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAb). These molecules have shown effectiveness in a subset of patients with specific genetic alterations (i.e. gain-of-function EGFR mutations or EGFR gene amplification) and have been approved for their use in non-small-cell lung cancer (NSCLC), colorectal cancer (CRC), pancreatic cancer and head and neck cancer. In addition, extensive research is being performed in many other tumour types hoping for a future approval. However, the majority of the patients show no benefit from these molecules due to primary mechanisms of resistance, already present before treatment or show disease progression upon the acquisition of drug resistance mechanisms during the treatment. At present, the majority of patients display resistance due to alterations in genes related to the EGFR signalling pathway that eventually circumvent EGFR inhibition and allow cancer progression. Thus, in this review article we focus on the molecular mechanisms underlying drug resistance via genetic alterations leading to resistance to all anti-EGFR drugs approved by the FDA and/or EMA. We also discuss novel approaches to surmount these chemoresistance modalities.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
7.
Hepatology ; 76(5): 1360-1375, 2022 11.
Article in English | MEDLINE | ID: mdl-35278227

ABSTRACT

BACKGROUND AND AIMS: In liver fibrosis, myofibroblasts derive from HSCs and as yet undefined mesenchymal cells. We aimed to identify portal mesenchymal progenitors of myofibroblasts. APPROACH AND RESULTS: Portal mesenchymal cells were isolated from mouse bilio-vascular tree and analyzed by single-cell RNA-sequencing. Thereby, we uncovered the landscape of portal mesenchymal cells in homeostatic mouse liver. Trajectory analysis enabled inferring a small cell population further defined by surface markers used to isolate it. This population consisted of portal fibroblasts with mesenchymal stem cell features (PMSCs), i.e., high clonogenicity and trilineage differentiation potential, that generated proliferative myofibroblasts, contrasting with nonproliferative HSC-derived myofibroblasts (-MF). Using bulk RNA-sequencing, we built oligogene signatures of the two cell populations that remained discriminant across myofibroblastic differentiation. SLIT2, a prototypical gene of PMSC/PMSC-MF signature, mediated profibrotic and angiogenic effects of these cells, which conditioned medium promoted HSC survival and endothelial cell tubulogenesis. Using PMSC/PMSC-MF 7-gene signature and slit guidance ligand 2 fluorescent in situ hybridization, we showed that PMSCs display a perivascular portal distribution in homeostatic liver and largely expand with fibrosis progression, contributing to the myofibroblast populations that form fibrotic septa, preferentially along neovessels, in murine and human liver disorders, irrespective of etiology. We also unraveled a 6-gene expression signature of HSCs/HSC-MFs that did not vary in these disorders, consistent with their low proliferation rate. CONCLUSIONS: PMSCs form a small reservoir of expansive myofibroblasts, which, in interaction with neovessels and HSC-MFs that mainly arise through differentiation from a preexisting pool, underlie the formation of fibrotic septa in all types of liver diseases.


Subject(s)
Liver Diseases , Mesenchymal Stem Cells , Mice , Humans , Animals , Myofibroblasts/metabolism , Culture Media, Conditioned/metabolism , In Situ Hybridization, Fluorescence , Ligands , Liver Cirrhosis/pathology , Liver/pathology , Fibroblasts/pathology , Liver Diseases/pathology , RNA , Hepatic Stellate Cells/metabolism , Cells, Cultured
8.
Cancers (Basel) ; 13(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209646

ABSTRACT

Transforming Growth Factor-beta (TGF-ß) superfamily members are essential for tissue homeostasis and consequently, dysregulation of their signaling pathways contributes to the development of human diseases. In the liver, TGF-ß signaling participates in all the stages of disease progression from initial liver injury to hepatocellular carcinoma (HCC). During liver carcinogenesis, TGF-ß plays a dual role on the malignant cell, behaving as a suppressor factor at early stages, but contributing to later tumor progression once cells escape from its cytostatic effects. Moreover, TGF-ß can modulate the response of the cells forming the tumor microenvironment that may also contribute to HCC progression, and drive immune evasion of cancer cells. Thus, targeting the TGF-ß pathway may constitute an effective therapeutic option for HCC treatment. However, it is crucial to identify biomarkers that allow to predict the response of the tumors and appropriately select the patients that could benefit from TGF-ß inhibitory therapies. Here we review the functions of TGF-ß on HCC malignant and tumor microenvironment cells, and the current strategies targeting TGF-ß signaling for cancer therapy. We also summarize the clinical impact of TGF-ß inhibitors in HCC patients and provide a perspective on its future use alone or in combinatorial strategies for HCC treatment.

9.
Hepatology ; 74(6): 3194-3212, 2021 12.
Article in English | MEDLINE | ID: mdl-34297412

ABSTRACT

BACKGROUND AND AIMS: Zinc finger E-box binding homeobox 1 (ZEB1) is a transcription factor that promotes metastatic and stem cell features, which has been associated with poor prognosis in cholangiocarcinoma (CCA), a desmoplastic cancer enriched in cancer-associated fibroblasts (CAFs). We aimed to define ZEB1 regulatory functions in malignant and stromal compartments of CCA. APPROACH AND RESULTS: Bioinformatic and immunohistochemical analyses were performed to determine correlations between ZEB1 and markers of progressiveness in human intrahepatic CCA (iCCA). Gain-of-function and loss-of-function models were generated in CCA cells and liver myofibroblasts as a model of CAFs. Conditioned media (CM) was used to unravel tumor-stroma interplay. In vivo experiments were performed using a xenograft CCA model. ZEB1 expression in tumor cells of human iCCA was associated with undifferentiated tumor and vascular invasion. In vitro, ZEB1 promoted epithelial-mesenchymal transition and stemness in tumor cells, leading to cell migration and spheroid formation. In vivo, ZEB1-overexpressing CCA cells formed larger tumors with more abundant stroma. Expression of cellular communication network factor 2 (CCN2, encoding connective tissue growth factor [CTGF]) was increased in tumor cells from ZEB1-overexpressing xenografts and correlated with ZEB1 expression in human tumors. In vitro, CM from ZEB1-overexpressing tumor cells or recombinant CTGF induced myofibroblast proliferation. ZEB1 was also expressed by CAFs in human CCA, and its expression correlated with CCN2 in myofibroblasts and CCA stroma. In mice, cotransplantation of CCA cells with ZEB1-depleted myofibroblasts reduced CCA progressiveness compared to CCA cells/ZEB1-expressing myofibroblasts. Furthermore, ZEB1 controls the expression of paracrine signals (i.e., HGF and IL6) in tumor cells and myofibroblasts. CONCLUSIONS: ZEB1 plays a key role in CCA progression by regulating tumor cell-CAF crosstalk, leading to tumor dedifferentiation and CAF activation.


Subject(s)
Bile Duct Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cell Dedifferentiation , Cholangiocarcinoma/metabolism , Paracrine Communication , Zinc Finger E-box-Binding Homeobox 1/metabolism , Animals , Bile Duct Neoplasms/pathology , Cancer-Associated Fibroblasts/pathology , Cholangiocarcinoma/pathology , Connective Tissue Growth Factor/metabolism , Epithelial-Mesenchymal Transition , Humans , Mice , Neoplasm Invasiveness , Neoplasm Transplantation , Stromal Cells
10.
Biochim Biophys Acta Mol Basis Dis ; 1867(4): 166067, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33418034

ABSTRACT

BACKGROUND & AIMS: Cholangiopathies are chronic liver diseases in which damaged cholangiocytes trigger a proinflammatory and profibrotic reaction. The nuclear vitamin D receptor (VDR) is highly expressed in cholangiocytes and exerts immune-regulatory functions in these cells. In the present study, we examined the protective function of VDR and other vitamin D signaling pathways in chronic cholangiopathy and cholangiocytes. METHODS: Vdr was invalidated in Abcb4 knockout mice, a widely used animal model of chronic cholangiopathy. The impact of vitamin D signaling on cholangiopathy features was examined in vivo and in cholangiocytes (primary and cell lines). RESULTS: Cholangiopathy features (i.e, cholestasis, ductular reaction and fibrosis) were aggravated in Vdr;Abcb4 double knockout mice compared to the Abcb4 simple knockout, and associated with an overexpression of proinflammatory factors. The proinflammatory phenotype of cholangiocytes was also exacerbated following VDR silencing in vitro. The expression of proinflammatory factors and the severity of cholangiopathy were reduced in the double knockout mice treated with the vitamin D analog calcipotriol or with vitamin D. In vitro, the inflammatory response to TNFα was significantly reduced by calcipotriol in biliary cells silenced for VDR, and this effect was abolished by co-silencing the plasma membrane receptor of vitamin D, protein disulfide-isomerase A3 (PDIA3). CONCLUSIONS: Our results demonstrate an anti-inflammatory role of VDR signaling in cholangiocytes and cholangiopathy. They also provide evidence for PDIA3-mediated anti-inflammatory effects of vitamin D and vitamin D analog in these settings.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B/genetics , Cholestasis/genetics , Receptors, Calcitriol/genetics , Vitamin D/metabolism , Animals , Cholestasis/drug therapy , Cholestasis/metabolism , Cholestasis/pathology , Fibrosis , Gene Deletion , Male , Mice, Inbred C57BL , Mice, Knockout , Receptors, Calcitriol/metabolism , Signal Transduction/drug effects , Vitamin D/therapeutic use , Vitamins/metabolism , Vitamins/therapeutic use , ATP-Binding Cassette Sub-Family B Member 4
11.
Cancers (Basel) ; 12(5)2020 May 19.
Article in English | MEDLINE | ID: mdl-32438553

ABSTRACT

Through the last decade, cold atmospheric plasma (CAP) has emerged as an innovative therapeutic option for cancer treatment. Recently, we have set up a potentially safe atmospheric pressure plasma jet device that displays antitumoral properties in a preclinical model of cholangiocarcinoma (CCA), a rare and very aggressive cancer emerging from the biliary tree with few efficient treatments. In the present study, we aimed at deciphering the molecular mechanisms underlying the antitumor effects of CAP towards CCA in both an in vivo and in vitro context. In vivo, using subcutaneous xenografts into immunocompromised mice, CAP treatment of CCA induced DNA lesions and tumor cell apoptosis, as evaluated by 8-oxoguanine and cleaved caspase-3 immunohistochemistry, respectively. The analysis of the tumor microenvironment showed changes in markers related to macrophage polarization. In vitro, the incubation of CCA cells with CAP-treated culture media (i.e., plasma-activated media, PAM) led to a dose response decrease in cell survival. At molecular level, CAP treatment induced double-strand DNA breaks, followed by an increased phosphorylation and activation of the cell cycle master regulators CHK1 and p53, leading to cell cycle arrest and cell death by apoptosis. In conclusion, CAP is a novel therapeutic option to consider for CCA in the future.

12.
Biochim Biophys Acta Mol Basis Dis ; 1863(7): 1699-1708, 2017 07.
Article in English | MEDLINE | ID: mdl-28390947

ABSTRACT

Nuclear receptors (NR), the largest family of transcription factors, control many physiological and pathological processes. To gain insight into hepatic NR and their potential as therapeutic targets in cholestatis, we determined their expression in individual cell types of the mouse liver in normal and cholestatic conditions. Hepatocytes, cholangiocytes, hepatic stellate cells (HSC), sinusoidal endothelial cells (SEC) and Kupffer cells (KC) were isolated from the liver of mice with acute or chronic cholestasis (i.e. bile duct-ligated or Abcb4-/- mice, respectively) and healthy controls. The expression of 43 out of the 49 NR was evidenced by RT-qPCR in one or several liver cell types. Expression of four NR was restricted to non-parenchymal liver cells. In normal conditions, NR were expressed at higher levels in individual cell types when compared to total liver. Half of the NR expressed in the liver had maximal expression in non-parenchymal cells. After bile duct ligation, NR mRNA changes occurred mostly in non-parenchymal cells and mainly consisted in down-regulations. In Abcb4-/- mice, NR mRNA changes were equally frequent in hepatocytes and non-parenchymal cells. Essentially down-regulations were found in hepatocytes, HSC and cholangiocytes, as opposed to up-regulations in SEC and KC. While undetectable in total liver, Vdr expression was up-regulated in all non-parenchymal cells in Abcb4-/- mice. In conclusion, non-parenchymal liver cells are a major site of NR expression. During cholestasis, NR expression is markedly altered mainly by down-regulations, suggesting major changes in metabolic activity. Thus, non-parenchymal cells are important new targets to consider in NR-directed therapies.


Subject(s)
Cholestasis/metabolism , Hepatocytes/metabolism , Liver/metabolism , Receptors, Cytoplasmic and Nuclear/biosynthesis , Transcriptome , ATP Binding Cassette Transporter, Subfamily B/deficiency , Animals , Cholestasis/genetics , Cholestasis/pathology , Disease Models, Animal , Gene Expression Regulation , Hepatocytes/pathology , Liver/pathology , Mice , Mice, Knockout , Receptors, Cytoplasmic and Nuclear/genetics , ATP-Binding Cassette Sub-Family B Member 4
13.
Free Radic Biol Med ; 97: 466-477, 2016 08.
Article in English | MEDLINE | ID: mdl-27387768

ABSTRACT

The accumulation of bile acids affects mitochondria causing oxidative stress. Antioxidant defense is accepted to include biotransformation of biliverdin (BV) into bilirubin (BR) through BV reductase α (BVRα). The mutation (c.214C>A) in BLVRA results in a non-functional enzyme (mutBVRα). Consequently, homozygous carriers suffering from cholestasis develop green jaundice. Whether BVRα deficiency reduces BV-dependent protection against bile acids is a relevant question because a screening of the mut-BLVRA allele (a) in 311 individuals in Greenland revealed that this SNP was relatively frequent in the Inuit population studied (1% a/a and 4.5% A/a). In three human liver cell lines an inverse correlation between BVRα expression (HepG2>Alexander>HuH-7) and basal reactive oxygen species (ROS) levels was found, however the ability of BV to reduce oxidative stress and cell death induced by deoxycholic acid (DCA) or potassium dichromate (PDC) was similar in these cells. The transduction of BVRα or mutBVRα in human placenta JAr cells with negligible BVRα expression or the silencing of endogenous BVRα expression in liver cells had no effect on DCA-induced oxidative stress and cell death or BV-mediated cytoprotection. DCA stimulated both superoxide anion and hydrogen peroxide production, whereas BV only inhibited the latter. DCA and other dihydroxy-bile acids, but not PDC, induced up-regulation of both BVRα and heme oxygenase-1 (HO-1) in liver cells through a FXR independent and BV insensitive mechanism. In conclusion, BV exerts direct and BVRα-independent antioxidant and cytoprotective effects, whereas bile acid accumulation in cholestasis stimulates the expression of enzymes favoring the heme biotransformation into BV and BR.


Subject(s)
Biliverdine/physiology , Deoxycholic Acid/physiology , Oxidative Stress , Animals , Biliverdine/pharmacology , Cholestasis/metabolism , Deoxycholic Acid/pharmacology , Free Radical Scavengers/pharmacology , Gene Expression , HEK293 Cells , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Hep G2 Cells , Humans , Liver/metabolism , Mice, Inbred C57BL , Mice, Knockout , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Potassium Dichromate/pharmacology , Protective Factors , Reactive Oxygen Species/metabolism
14.
Dig Dis ; 33(3): 357-66, 2015.
Article in English | MEDLINE | ID: mdl-26045270

ABSTRACT

BACKGROUND: Nuclear receptors (NRs) form a family of 48 members. NRs control hepatic processes such as bile acid homeostasis, lipid metabolism and mechanisms involved in fibrosis and inflammation. Due to their central role in the regulation of hepatoprotective mechanisms, NRs are promising therapeutic targets in cholestatic disorders. KEY MESSAGES: NRs can be classified into five different physiological clusters. NRs from the 'bile acids and xenobiotic metabolism' and from the 'lipid metabolism and energy homeostasis' clusters are strongly expressed in the liver. Furthermore, NRs from these clusters, such as farnesoid X receptor α (FXRα), pregnane X receptor (PXR) and peroxisome proliferator-activated receptors (PPARs), have been associated with the pathogenesis and the progression of cholestasis. The latter observation is also true for vitamin D receptor (VDR), which is barely detectable in the whole liver, but has been linked to cholestatic diseases. Involvement of VDR in cholestasis is ascribed to a strong expression in nonparenchymal liver cells, such as biliary epithelial cells, Kupffer cells and hepatic stellate cells. Likewise, NRs from other physiological clusters with low hepatic expression, such as estrogen receptor α (ERα) or reverse-Erb α/ß (REV-ERB α/ß), may also control pathophysiological processes in cholestasis. CONCLUSIONS: In this review, we will describe the impact of individual NRs on cholestasis. We will then discuss the potential role of these transcription factors as therapeutic targets.


Subject(s)
Bile Acids and Salts/metabolism , Cholestasis/metabolism , Energy Metabolism , Lipid Metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Acute Disease , Animals , Central Nervous System/metabolism , Cholestasis/therapy , Chronic Disease , Circadian Clocks , Humans , Receptors, Cytoplasmic and Nuclear/chemistry
15.
Clin Res Hepatol Gastroenterol ; 39(1): 3-6, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25459993

ABSTRACT

E-cadherin is a cell-to-cell adhesion molecule involved in epithelial cell behavior, tissue formation and cancer suppression. In the liver, E-cadherin is expressed by hepatocytes and biliary epithelial cells. However, the exact role of E-cadherin in hepatic pathophysiology remains largely unknown. Recently, specific loss of E-cadherin in liver epithelial cells has been shown to favor periportal fibrosis, periportal inflammation and liver cancer progression, suggesting that E-cadherin is a central liver protector.


Subject(s)
Cadherins/metabolism , Carcinogenesis , Cholangitis, Sclerosing/metabolism , Gene Expression Regulation, Neoplastic , Liver Neoplasms/metabolism , Animals , Male
16.
Mol Pharm ; 11(6): 1856-68, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24824514

ABSTRACT

Deletions and mutations in mitochondrial DNA (mtDNA), which are frequent in human tumors, such as hepatocellular carcinoma (HCC), may contribute to enhancing their malignant phenotype. Here we have investigated the effect of mtDNA depletion in the expression of genes accounting for mechanisms of chemoresistance (MOC) in HCC. Using human HCC SK-Hep-1 cells depleted of mtDNA (Rho), changes in gene expression in response to antitumor drugs previously assayed in HCC treatment were analyzed. In Rho cells, a decreased sensitivity to doxorubicin-, SN-38-, cisplatin (CDDP)-, and sorafenib-induced cell death was found. Both constitutive and drug-induced reactive oxygen species generation were decreased. Owing to activation of the NRF2-mediated pathway, MDR1, MRP1, and MRP2 expression was higher in Rho than in wild-type cells. This difference was maintained after further upregulation induced by treatment with doxorubicin, SN-38, or CDDP. Topoisomerase-IIa expression was also enhanced in Rho cells before and after treatment with these drugs. Moreover, the ability of doxorubicin, SN-38 and CDDP to induce proapoptotic signals was weaker in Rho cells, as evidenced by survivin upregulation and reductions in Bax/Bcl-2 expression ratios. Changes in these genes seem to play a minor role in the enhanced resistance of Rho cells to sorafenib, which may be related to an enhanced intracellular ATP content together with the loss of expression of the specific target of sorafenib, tyrosine kinase receptor Kit. In conclusion, these results suggest that mtDNA depletion may activate MOC able to hinder the efficacy of chemotherapy against HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression/genetics , Genome, Mitochondrial/genetics , Adenosine Triphosphate/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Gene Expression/drug effects , Genome, Mitochondrial/drug effects , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
17.
Toxicol Appl Pharmacol ; 277(1): 77-85, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24631341

ABSTRACT

Acetaminophen is used as first-choice drug for pain relief during pregnancy. Here we have investigated the effect of acetaminophen at subtoxic doses on the expression of ABC export pumps in trophoblast cells and its functional repercussion on the placental barrier during maternal cholestasis. The incubation of human choriocarcinoma cells (JAr, JEG-3 and BeWo) with acetaminophen for 48h resulted in no significant changes in the expression and/or activity of MDR1 and MRPs. In contrast, in JEG-3 cells, BCRP mRNA, protein, and transport activity were reduced. In rat placenta, collected at term, acetaminophen administration for the last three days of pregnancy resulted in enhanced mRNA, but not protein, levels of Mrp1 and Bcrp. In fact, a decrease in Bcrp protein was found. Using in situ perfused rat placenta, a reduction in the Bcrp-dependent fetal-to-maternal bile acid transport after treating the dams with acetaminophen was found. Complete biliary obstruction in pregnant rats induced a significant bile acid accumulation in fetal serum and tissues, which was further enhanced when the mothers were treated with acetaminophen. This drug induced increased ROS production in JEG-3 cells and decreased the total glutathione content in rat placenta. Moreover, the NRF2 pathway was activated in JEG-3 cells as shown by an increase in nuclear NRF2 levels and an up-regulation of NRF2 target genes, NQO1 and HMOX-1, which was not observed in rat placenta. In conclusion, acetaminophen induces in placenta oxidative stress and a down-regulation of BCRP/Bcrp, which may impair the placental barrier to bile acids during maternal cholestasis.


Subject(s)
ATP-Binding Cassette Transporters/biosynthesis , Acetaminophen/pharmacology , Analgesics, Non-Narcotic/pharmacology , Bile Acids and Salts/metabolism , Cholestasis/physiopathology , Neoplasm Proteins/biosynthesis , Placenta/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Animals , Biological Transport, Active/drug effects , Cell Line, Tumor , Down-Regulation/drug effects , Female , Gene Expression/drug effects , Humans , Multidrug Resistance-Associated Proteins/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Placenta/metabolism , Pregnancy , RNA, Messenger , Rats , Rats, Wistar , Trophoblasts
18.
Eur J Nutr ; 53(2): 401-12, 2014.
Article in English | MEDLINE | ID: mdl-23708151

ABSTRACT

PURPOSE: Owing to its ability to inactivate harmful radicals, vitamin C plays a key role in antioxidant defense. The bioavailability of this vitamin depends upon the nutritional intake and its uptake by cells, mainly through the sodium-dependent transporters SVCT1/Svct1 and SVCT2/Svct2 (human/rat). Here, we investigated the effect of liver metabolic/oxidative stress on the expression of these transporters in extrahepatic tissues. METHODS AND RESULTS: In Zucker rats, used here as a model of liver steatosis, Svct1-2 mRNA levels were similar in obese and lean animals, except for lung tissue, where Svct2 was up-regulated. Diabetes mellitus, developed by streptozotocin administration, was accompanied by a down-regulation of Svct1 in liver and kidney, together with a down-regulation of Svct2 in kidney and brain. Complete obstructive cholestasis due to bile duct ligation for 1 week induced a significant down-regulation of both Svct1 and Svct2 in ileum, whereas Svct2 was up-regulated in liver, and no significant changes in the expression of either transporter were found in kidney, brain or lung. In rat hepatoma Can-10 cells, bile acids, but not the FXR agonist GW4064, induced an up-regulation of Svct1 and Svct2. In human hepatoma Alexander cells transfected with FXR/RXRα/OATP1B1, neither GW4064 nor unconjugated or glycine-/taurine-conjugated major bile acids were able to up-regulate either SVCT1 or SVCT2. CONCLUSIONS: Pathological circumstances characterized by the presence of metabolic/oxidative stress in the liver induce different responses in the expression of ascorbic acid transporters in intrahepatic and extrahepatic tissues, which may affect the overall bioavailability and cellular uptake of this vitamin.


Subject(s)
Gene Expression , Liver/metabolism , Oxidative Stress/physiology , Sodium-Coupled Vitamin C Transporters/genetics , Stress, Physiological/physiology , Animals , Ascorbic Acid/pharmacokinetics , Ascorbic Acid/pharmacology , Bile Acids and Salts/pharmacology , Biological Availability , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cholestasis/metabolism , Diabetes Mellitus, Experimental/metabolism , Disease Models, Animal , Fatty Liver/etiology , Fatty Liver/metabolism , Gene Expression/drug effects , Humans , Kidney/chemistry , Liver/chemistry , Liver Neoplasms/metabolism , Male , Obesity/complications , Oxidation-Reduction , RNA, Messenger/analysis , Rats , Rats, Zucker
19.
Free Radic Biol Med ; 61: 218-28, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23597504

ABSTRACT

Acute accumulation of bile acids in hepatocytes may cause cell death. However, during long-term exposure due to prolonged cholestasis, hepatocytes may develop a certain degree of chemoresistance to these compounds. Because mitochondrial adaptation to persistent oxidative stress may be involved in this process, here we have investigated the effects of complete mitochondrial genome depletion on the response to bile acid-induced hepatocellular injury. A subline (Rho) of human hepatoma SK-Hep-1 cells totally depleted of mitochondrial DNA (mtDNA) was obtained, and bile acid-induced concentration-dependent activation of apoptosis/necrosis and survival signaling pathways was studied. In the absence of changes in intracellular ATP content, Rho cells were highly resistant to bile acid-induced apoptosis and partially resistant to bile acid-induced necrosis. In Rho cells, both basal and bile acid-induced generation of reactive oxygen species (ROS), such as hydrogen peroxide and superoxide anion, was decreased. Bile acid-induced proapoptotic signals were also decreased, as evidenced by a reduction in the expression ratios Bax-α/Bcl-2, Bcl-xS/Bcl-2, and Bcl-xS/Bcl-xL. This was mainly due to a downregulation of Bax-α and Bcl-xS. Moreover, in these cells the Akt/mTOR pathway was constitutively activated in a ROS-independent manner and remained similarly activated in the presence of bile acid treatment. In contrast, ERK1/2 activation was constitutively reduced and was not activated by incubation with bile acids. In conclusion, these results suggest that impaired mitochondrial function associated with mtDNA alterations, which may occur in liver cells during prolonged cholestasis, may activate mechanisms of cell survival accounting for an enhanced resistance of hepatocytes to bile acid-induced apoptosis.


Subject(s)
Apoptosis/drug effects , Bile Acids and Salts/pharmacology , Genome, Mitochondrial/physiology , Proto-Oncogene Proteins c-akt/physiology , Proto-Oncogene Proteins c-bcl-2/physiology , Signal Transduction/physiology , TOR Serine-Threonine Kinases/physiology , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Cell Survival , Humans , Reactive Oxygen Species/metabolism
20.
Mol Pharm ; 9(9): 2565-76, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22800197

ABSTRACT

Export pumps often limit the usefulness of anticancer drugs. Here we investigated the effect of cisplatin on the expression of ABC proteins in human colon cancer cells. Short-term incubation of Caco-2 and LS174T cells with cisplatin resulted in up-regulation of several ABC pumps, in particular MRP2 and BCRP. In partially cisplatin-resistant cells (LS174T/R) obtained by long-term exposure to cisplatin, MRP2 and BCRP up-regulation was more marked. This was further enhanced when these cells were cultured under maintained stimulation with cisplatin. The MRP2 promoter (MRP2pr) was cloned, and partially deleted constructs linked to reporter genes were generated. Transfection of LS174T and LS174T/R cells with these constructs revealed the ability of cisplatin to activate MRP2pr. The intensity of this response was dependent on the conserved MRP2pr region. Basal MRP2pr activity was higher in LS174T/R cells, in which the expression of the transcription factors c/EBPß, HNF1α, HNF3ß, and HNF4α, but not PXR, p53, c-Myc, AP1, YB-1, NRF2, and RARα was enhanced. Up-regulation was particularly high for FXR (200-fold) and SHP (50-fold). In LS174T/R cells, GW4064 induced the expression of FGF19, SHP, OSTα/ß, but not MRP2 and BCRP, although the sensitivity of these cells to cisplatin was further reduced. In LS174T cells, GW4064-induced chemoresistance was seen only after being transfected with FXR+RXR, when BCRP, but not MRP2, was up-regulated. Protection of LS174T cells against cisplatin was mimicked by transfection with BCRP. In conclusion, in colon cancer cells, cisplatin treatment enhances chemoresistance through FXR-dependent and FXR-independent mechanisms involving the expression of BCRP and MRP2, respectively.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Cisplatin/pharmacology , Colonic Neoplasms/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/metabolism , Caco-2 Cells , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drug Resistance, Neoplasm , Gene Expression/drug effects , Genes, Reporter/drug effects , Hep G2 Cells , Humans , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Promoter Regions, Genetic/drug effects , Receptors, Cytoplasmic and Nuclear/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation/drug effects , Transfection/methods , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...