Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37959134

ABSTRACT

The global coconut water market is projected to grow in the upcoming years, attributed to its numerous health benefits. However, due to its susceptibility to microbial contamination and the limitations of non-thermal decontamination methods, thermal treatments remain the primary approach to ensure the shelf-life stability and the microbiological safety of the product. In this study, the thermal inactivation of Listeria innocua, a Listeria monocytogenes surrogate, was evaluated in coconut water and in tryptone soy broth (TSB) under both isothermal (50-60 °C) and dynamic conditions (from 30 to 60 °C, with temperature increases of 0.5, 1 and 5 °C/min). Mathematical models were used to analyse the inactivation data. The Geeraerd model effectively described the thermal inactivation of L. innocua in both TSB and coconut water under isothermal conditions, with close agreement between experimental data and model fits. Parameter estimates and analysis revealed that acidified TSB is a suitable surrogate medium for studying the thermal inactivation of L. innocua in coconut water, despite minor differences observed in the shoulder length of inactivation curves, likely attributed to the media composition. The models fitted to the data obtained at isothermal conditions fail to predict L. innocua responses under dynamic conditions. This is attributed to the stress acclimation phenomenon that takes place under dynamic conditions, where bacterial cells adapt to initial sub-lethal treatment stages, leading to increased thermal resistance. Fitting the Bigelow model directly to dynamic data with fixed z-values reveals a three-fold increase in D-values with lower heating rates, supporting the role of stress acclimation. The findings of this study aid in designing pasteurization treatments targeting L. innocua in coconut water and enable the establishment of safe, mild heat treatments for refrigerated, high-quality coconut water.

2.
Food Microbiol ; 84: 103238, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31421752

ABSTRACT

Modelling of stress acclimation induced by thermal inactivation of Listeria monocytogenes under dynamic conditions is analyzed in this work. A mathematical model that separates the effect of the instantaneous temperature from the one of stress acclimation, was used. The model was trained using isothermal inactivation experiments, and one biphasic dynamic treatment with a heating rate of 1 °C/min and a holding phase of 60 °C. These experiments were performed in laboratory media (Tryptic Soy Broth; TSB). The model parameters estimated through these experiments (D55=12.87±0.82min, z=4.58±0.04°C, a=0.11±0.01min-1, E=0.50±0.01°C and c=1.23±0.03) were successfully used to predict the microbial inactivation for another seven inactivation profiles, with and without a holding phase. Moreover, similar experiments were performed using milk as heating media, obtaining a good agreement between the model predictions and the empirical observations. The results of this study are compatible with the hypothesis that L. monocytogenes is able to develop a physiological response during dynamic treatments that increases its thermal resistance. Also, that the model used can be used to predict microbial inactivation of this microorganism taking into consideration stress acclimation.


Subject(s)
Food Microbiology , Hot Temperature , Listeria monocytogenes/physiology , Microbial Viability , Models, Theoretical , Stress, Physiological , Colony Count, Microbial , Kinetics , Thermotolerance
3.
Food Microbiol ; 72: 98-105, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29407410

ABSTRACT

In this study, growth and/or inactivation of Listeria monocytogenes 4032 at different inoculum levels in a vegetable smoothie with purple colour, (previously heat stabilised at 95 °C for 3 min) was evaluated. Growth/inactivation was compared with acidified TSB medium at the same pH level with HCl. Samples were stored at different temperatures (5, 10, 15 and 25 °C). All the smoothies stored at 15 and 25 °C showed growth up to 7.5-8.0 log CFU/mL and at 10 °C growth was only observed at the highest inoculum level. Growth was only observed at 25 °C in acidified TSB. In the case of the smoothies inoculated and stored at 5 °C, L. monocytogenes was not able to grow but survived for a long period of time, whereas at the lower inocula at 10 °C they presented a slow inactivation for an extended time. Acidified TSB inoculated and stored showed inactivation at 5, 10 and 15 °C. Best inactivation modelling alternatives are proposed. The differences between the smoothie and TSB medium about growth or survival in this study, even at relatively low pH values, were due to the favorable nutritional composition of the smoothie compared to a laboratory medium. Results in this study can allow to design safe conditions for smoothie production.


Subject(s)
Food Contamination/analysis , Food Storage/methods , Fruit and Vegetable Juices/microbiology , Listeria monocytogenes/growth & development , Vegetables/chemistry , Colony Count, Microbial , Culture Media/chemistry , Culture Media/metabolism , Fruit and Vegetable Juices/analysis , Hydrogen-Ion Concentration , Listeria monocytogenes/metabolism , Microbial Viability , Temperature , Vegetables/microbiology
4.
Int J Food Microbiol ; 266: 133-141, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29216553

ABSTRACT

This contribution presents a mathematical model to describe non-isothermal microbial inactivation processes taking into account the acclimation of the microbial cell to thermal stress. The model extends the log-linear inactivation model including a variable and model parameters quantifying the induced thermal resistance. The model has been tested on cells of Escherichia coli against two families of non-isothermal profiles with different constant heating rates. One of the families was composed of monophasic profiles, consisting of a non-isothermal heating stage from 35 to 70°C; the other family was composed of biphasic profiles, consisting of a non-isothermal heating stage followed by a holding period at constant temperature of 57.5°C. Lower heating rates resulted in a higher thermal resistance of the bacterial population. This was reflected in a higher D-value. The parameter estimation was performed in two steps. Firstly, the D and z-values were estimated from the isothermal experiments. Next, the parameters describing the acclimation were estimated using one of the biphasic profiles. This set of parameters was able to describe the remaining experimental data. Finally, a methodology for the construction of diagrams illustrating the magnitude of the induced thermal resistance is presented. The methodology has been illustrated by building it for a biphasic temperature profile with a linear heating phase and a holding phase. This diagram provides a visualization of how the shape of the temperature profile (heating rate and holding temperature) affects the acclimation of the cell to the thermal stress. This diagram can be used for the design of inactivation treatments by industry taking into account the acclimation of the cell to the thermal stress.


Subject(s)
Food Microbiology , Models, Biological , Stress, Physiological , Temperature , Acclimatization/physiology , Bacterial Physiological Phenomena , Colony Count, Microbial , Escherichia coli , Kinetics , Microbial Viability
SELECTION OF CITATIONS
SEARCH DETAIL
...