Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Biophotonics ; 14(1): e202000128, 2021 01.
Article in English | MEDLINE | ID: mdl-32981235

ABSTRACT

One important limitation of topical photodynamic therapy (PDT) is the limited tissue penetration of precursors. Microneedles (MNs) are minimally invasive devices used to promote intradermal drug delivery. Dissolving MNs contain drug-associated to polymer blends, dissolving after insertion into skin, allowing drug release. This study comprises development and characterization of a pyramidal model of dissolving MNs (500 µm) prepared with 5% wt/wt aminolevulinic acid and 20% wt/wt Gantrez AN-139 in aqueous blend. Protoporphyrin IX formation and distribution were evaluated in tumor mice model by using fluorescence widefield imaging, spectroscopy, and confocal microscopy. MNs demonstrated excellent mechanical resistance penetrating about 250 µm with minor size alteration in vitro, and fluorescence intensity was 5-times higher at 0.5 mm on average compared to cream in vivo (being 10 ± 5 a.u. for MNs and 2.4 ± 0.8 a.u. for cream). Dissolving MNs have overcome topical cream application, being extremely promising especially for thicker skin lesions treatment using PDT.


Subject(s)
Aminolevulinic Acid , Photochemotherapy , Administration, Cutaneous , Aminolevulinic Acid/pharmacology , Animals , Mice , Photosensitizing Agents/pharmacology , Protoporphyrins , Skin
2.
J Control Release ; 265: 93-101, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-29037785

ABSTRACT

Polymeric microneedle (MN) arrays continue to receive growing attention due to their ability to bypass the skin's stratum corneum barrier in a minimally-invasive fashion and achieve enhanced transdermal drug delivery and "targeted" intradermal vaccine administration. In this research work, we fabricated biodegradable bilayer MN arrays containing nano - microparticles for targeted and sustained intradermal drug delivery. For this study, model drug (vitamin D3, VD3)-loaded PLGA nano- and microparticles (NMP) were prepared by a single emulsion solvent evaporation method with 72.8% encapsulation of VD3. The prepared NMP were directly mixed 20% w/v poly(vinyl pyrrolidone) (PVP) gel, with the mixture filled into laser engineered micromoulds by high-speed centrifugation (30min) to concentrate NMP into MN shafts. The particle size of PLGA NMP ranged from 300nm to 3.5µm and they retained their particle size after moulding of bilayer MN arrays. The relatively wide particle size distribution of PLGA NMP was shown to be important in producing a compact structure in bilayer conical, as well as pyramidal, MN, as confirmed by scanning electron microscopy. The drug release profile from PLGA NMP was tri-phasic, being sustained over 5days. The height of bilayer MN arrays was influenced by the weight ratio of NMP and 20% w/v PVP. Good mechanical and insertion profiles (into a skin simulant and excised neonatal porcine skin) were confirmed by texture analysis and optical coherence tomography, respectively. Ex vivo intradermal neonatal porcine skin penetration of VD3 NMP from bilayer MN was quantitatively analysed after cryostatic skin sectioning, with 74.2±9.18% of VD3 loading delivered intradermally. The two-stage novel processing strategy developed here provides a simple and easy method for localising particulate delivery systems into dissolving MN. Such systems may serve as promising means for controlled transdermal delivery and targeted intradermal administration.


Subject(s)
Drug Carriers/chemistry , Lactic Acid/chemistry , Nanoparticles/chemistry , Needles , Polyglycolic Acid/chemistry , Administration, Cutaneous , Animals , Cholecalciferol/chemistry , Cholecalciferol/pharmacology , Drug Liberation , Humans , Injections, Intradermal , Lasers , Microinjections , Microspheres , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Proof of Concept Study , Skin/metabolism , Skin Absorption , Solubility , Surface Properties , Swine
3.
J Control Release ; 265: 30-40, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-28754611

ABSTRACT

Neonatal infections are a leading cause of childhood mortality in low-resource settings. World Health Organization guidelines for outpatient treatment of possible serious bacterial infection (PSBI) in neonates and young infants when referral for hospital treatment is not feasible include intramuscular gentamicin (GEN) and oral amoxicillin. GEN is supplied as an aqueous solution of gentamicin sulphate in vials or ampoules and requires health care workers to be trained in dose calculation or selection of an appropriate dose based on the patient's weight band and to have access to safe injection supplies and appropriate sharps disposal. A simplified formulation, packaging, and delivery method to treat PSBI in low-resource settings could decrease user error and expand access to lifesaving outpatient antibiotic treatment for infants with severe infection during the neonatal period. We developed dissolving polymeric microneedles (MN) arrays to deliver GEN transdermally. MN arrays were produced from aqueous blends containing 30% (w/w) of GEN and two polymers approved by the US Food and Drug Administration: sodium hyaluronate and poly(vinylpyrrolidone). The arrays (19×19 needles and 500µm height) were mechanically strong and were able to penetrate a skin simulant to a depth of 378µm. The MN arrays were tested in vitro using a Franz Cell setup delivering approximately 4.45mg of GEN over 6h. Finally, three different doses (low, medium, and high) of GEN delivered by MN arrays were tested in an animal model. Maximum plasma levels of GEN were dose-dependent and ranged between 2 and 5µg/mL. The time required to reach these levels post-MN array application ranged between 1 and 6h. This work demonstrated the potential of dissolving MN arrays to deliver GEN transdermally at therapeutic levels in vivo.


Subject(s)
Anti-Bacterial Agents/pharmacology , Excipients/chemistry , Gentamicins/pharmacology , Needles , Neonatal Sepsis/drug therapy , Administration, Cutaneous , Animals , Animals, Newborn , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Drug Delivery Systems/methods , Female , Gentamicins/administration & dosage , Gentamicins/chemistry , Humans , Kinetics , Mechanical Phenomena , Microinjections , Permeability , Povidone/chemistry , Rats, Sprague-Dawley , Skin/metabolism , Solubility
4.
Eur J Pharm Biopharm ; 102: 123-31, 2016 May.
Article in English | MEDLINE | ID: mdl-26969262

ABSTRACT

We describe, for the first time, hydrogel-forming microneedle (s) (MN) arrays for minimally-invasive extraction and quantification of lithium in vitro and in vivo. MN arrays, prepared from aqueous blends of hydrolysed poly(methyl-vinylether-co-maleic anhydride) and crosslinked by poly(ethyleneglycol), imbibed interstitial fluid (ISF) upon skin insertion. Such MN were always removed intact. In vitro, mean detected lithium concentrations showed no significant difference following 30min MN application to excised neonatal porcine skin for lithium citrate concentrations of 0.9 and 2mmol/l. However, after 1h application, the mean lithium concentrations extracted were significantly different, being appropriately concentration-dependent. In vivo, rats were orally dosed with lithium citrate equivalent to 15mg/kg and 30mg/kg lithium carbonate, respectively. MN arrays were applied 1h after dosing and removed 1h later. The two groups, having received different doses, showed no significant difference between lithium concentrations in serum or MN. However, the higher dosed rats demonstrated a lithium concentration extracted from MN arrays equivalent to a mean increase of 22.5% compared to rats which received the lower dose. Hydrogel-forming MN clearly have potential as a minimally-invasive tool for lithium monitoring in outpatient settings. We will now focus on correlation between serum and MN lithium concentrations.


Subject(s)
Hydrogel, Polyethylene Glycol Dimethacrylate/administration & dosage , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Lithium/administration & dosage , Lithium/chemistry , Administration, Cutaneous , Animals , Drug Delivery Systems/methods , Male , Microinjections/methods , Needles , Rats , Rats, Sprague-Dawley , Skin/metabolism , Swine
5.
PLoS One ; 10(12): e0145644, 2015.
Article in English | MEDLINE | ID: mdl-26717198

ABSTRACT

We describe, for the first time the use of hydrogel-forming microneedle (MN) arrays for minimally-invasive extraction and quantification of drug substances and glucose from skin in vitro and in vivo. MN prepared from aqueous blends of hydrolysed poly(methyl-vinylether-co-maleic anhydride) (11.1% w/w) and poly(ethyleneglycol) 10,000 daltons (5.6% w/w) and crosslinked by esterification swelled upon skin insertion by uptake of fluid. Post-removal, theophylline and caffeine were extracted from MN and determined using HPLC, with glucose quantified using a proprietary kit. In vitro studies using excised neonatal porcine skin bathed on the underside by physiologically-relevant analyte concentrations showed rapid (5 min) analyte uptake. For example, mean concentrations of 0.16 µg/mL and 0.85 µg/mL, respectively, were detected for the lowest (5 µg/mL) and highest (35 µg/mL) Franz cell concentrations of theophylline after 5 min insertion. A mean concentration of 0.10 µg/mL was obtained by extraction of MN inserted for 5 min into skin bathed with 5 µg/mL caffeine, while the mean concentration obtained by extraction of MN inserted into skin bathed with 15 µg/mL caffeine was 0.33 µg/mL. The mean detected glucose concentration after 5 min insertion into skin bathed with 4 mmol/L was 19.46 nmol/L. The highest theophylline concentration detected following extraction from a hydrogel-forming MN inserted for 1 h into the skin of a rat dosed orally with 10 mg/kg was of 0.363 µg/mL, whilst a maximum concentration of 0.063 µg/mL was detected following extraction from a MN inserted for 1 h into the skin of a rat dosed with 5 mg/kg theophylline. In human volunteers, the highest mean concentration of caffeine detected using MN was 91.31 µg/mL over the period from 1 to 2 h post-consumption of 100 mg Proplus® tablets. The highest mean blood glucose level was 7.89 nmol/L detected 1 h following ingestion of 75 g of glucose, while the highest mean glucose concentration extracted from MN was 4.29 nmol/L, detected after 3 hours skin insertion in human volunteers. Whilst not directly correlated, concentrations extracted from MN were clearly indicative of trends in blood in both rats and human volunteers. This work strongly illustrates the potential of hydrogel-forming MN in minimally-invasive patient monitoring and diagnosis. Further studies are now ongoing to reduce clinical insertion times and develop mathematical algorithms enabling determination of blood levels directly from MN measurements.


Subject(s)
Drug Monitoring , Glucose/analysis , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Microinjections , Pharmaceutical Preparations/analysis , Animals , Animals, Newborn , Caffeine/analysis , Healthy Volunteers , Rats , Reproducibility of Results , Sus scrofa , Theophylline/analysis
6.
Exp Dermatol ; 24(8): 561-6, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25865925

ABSTRACT

Microneedles (MNs) are micron-sized, minimally invasive devices that breach the outermost layer of the skin, the stratum corneum (SC), creating transient, aqueous pores in the skin and facilitating the transport of therapeutic molecules into the epidermis. Following many years of extensive research in the area of MN-mediated trans- and intra-dermal drug delivery, MNs are now being exploited in the cosmeceutical industry as a means of disrupting skin cell architecture, inducing elastin and collagen expression and deposition. They are also being used as vehicles to deliver cosmeceutic molecules across the skin, in addition to their use in combinatorial treatments with topical agents or light sources. This review explores the chronology of microneedling methodologies, which has led to the emergence of MN devices, now extensively used in cosmeceutical applications. Recent developments in therapeutic molecule and peptide delivery to the skin via MN platforms are addressed and some commercially available MN devices are described. Important safety and regulatory considerations relating to MN usage are addressed, as are studies relating to public perception of MN, as these will undoubtedly influence the acceptance of MN products as they progress towards commercialisation.


Subject(s)
Cosmetic Techniques , Epidermis , Needles , Punctures/methods , Skin Diseases/therapy , Administration, Cutaneous , Collagen/genetics , Collagen/metabolism , Cosmetic Techniques/instrumentation , Drug Delivery Systems/instrumentation , Elastin/genetics , Elastin/metabolism , Epidermis/drug effects , Epidermis/metabolism , Epidermis/radiation effects , Equipment Design , Humans , Hyaluronic Acid/administration & dosage , Intercellular Signaling Peptides and Proteins/metabolism , Neovascularization, Physiologic , Patient Acceptance of Health Care , Peptides/administration & dosage , Photochemotherapy/instrumentation , Porosity , Punctures/instrumentation , Rejuvenation , Skin Absorption , Skin Aging/drug effects , Skin Diseases/drug therapy , Wound Healing
7.
Int J Pharm ; 472(1-2): 65-73, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-24877757

ABSTRACT

A commercial polymeric film (Parafilm M(®), a blend of a hydrocarbon wax and a polyolefin) was evaluated as a model membrane for microneedle (MN) insertion studies. Polymeric MN arrays were inserted into Parafilm M(®) (PF) and also into excised neonatal porcine skin. Parafilm M(®) was folded before the insertions to closely approximate thickness of the excised skin. Insertion depths were evaluated using optical coherence tomography (OCT) using either a force applied by a Texture Analyser or by a group of human volunteers. The obtained insertion depths were, in general, slightly lower, especially for higher forces, for PF than for skin. However, this difference was not a large, being less than the 10% of the needle length. Therefore, all these data indicate that this model membrane could be a good alternative to biological tissue for MN insertion studies. As an alternative method to OCT, light microscopy was used to evaluate the insertion depths of MN in the model membrane. This provided a rapid, simple method to compare different MN formulations. The use of Parafilm M(®), in conjunction with a standardised force/time profile applied by a Texture Analyser, could provide the basis for a rapid MN quality control test suitable for in-process use. It could also be used as a comparative test of insertion efficiency between candidate MN formulations.


Subject(s)
Membranes, Artificial , Microinjections , Paraffin , Animals , Animals, Newborn , Needles , Skin/metabolism , Swine
8.
J Pharm Sci ; 103(5): 1478-86, 2014 May.
Article in English | MEDLINE | ID: mdl-24633895

ABSTRACT

We describe, for the first time, quantification of in-skin swelling and fluid uptake by hydrogel-forming microneedle (MN) arrays and skin barrier recovery in human volunteers. Such MN arrays, prepared from aqueous blends of hydrolyzed poly(methylvinylether/maleic anhydride) (15%, w/w) and the cross-linker poly(ethyleneglycol) 10,000 Da (7.5%, w/w), were inserted into the skin of human volunteers (n = 15) to depths of approximately 300 µm by gentle hand pressure. The MN arrays swelled in skin, taking up skin interstitial fluid, such that their mass had increased by approximately 30% after 6 h in skin. Importantly, however, skin barrier function recovered within 24 h after MN removal, regardless of how long the MN had been in skin or how much their volume had increased with swelling. Further research on closure of MN-induced micropores is required because transepidermal water loss measurements suggested micropore closure, whereas optical coherence tomography indicated that MN-induced micropores had not closed over, even 24 h after MN had been removed. There were no complaints of skin reactions, adverse events, or strong views against MN use by any of the volunteers. Only some minor erythema was noted after patch removal, although this always resolved within 48 h, and no adverse events were present on follow-up.


Subject(s)
Equipment Design/instrumentation , Hydrogel, Polyethylene Glycol Dimethacrylate/administration & dosage , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Microinjections/instrumentation , Skin/drug effects , Administration, Cutaneous , Adult , Equipment Design/methods , Female , Humans , Male , Microinjections/methods , Middle Aged , Needles , Polymers/administration & dosage , Polymers/chemistry , Recovery of Function , Young Adult
9.
Photochem Photobiol ; 90(3): 641-7, 2014.
Article in English | MEDLINE | ID: mdl-24215482

ABSTRACT

We present "one-step application" dissolving and hydrogel-forming microneedle arrays (MN) for enhanced delivery of photosensitizers/precursors. MN (280 µm) prepared from 20% w/w poly(methylvinylether/maelic acid) and cross-linked with glycerol by esterification to form hydrogels upon skin insertion, or allowed to dissolve rapidly in skin, were combined with patches containing 19 mg cm(-2) of 5-aminolevulinic acid (ALA) or meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP) for drug delivery. Both MN types were mechanically robust, with compression forces of 20.0 N only causing height reductions of 14%. Application forces as low as 8.0 N per array allowed >95% of the MN in each array type to penetrate excised porcine skin, with the MN penetrating to approximately 220 µm. MN significantly enhanced transdermal delivery of ALA and TMP in vitro, with the hydrogel-forming system comparable with the dissolving system for ALA delivery (approximately 3000 nmol cm(-2) over 6 h), but superior for delivery of the much larger TMP molecule (approximately 14 nmol cm(-2) over 24 h, compared to 0.15 nmol cm(-2)). As this technology clearly has potential in enhanced photodynamic therapy of neoplastic skin lesions, we are currently planning animal studies, to be followed by preliminary human evaluations. GMP manufacturing scale-up is ongoing.


Subject(s)
Hydrogels , Needles , Photosensitizing Agents/administration & dosage , Animals , Solubility , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...