Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Sci (China) ; 140: 292-305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38331509

ABSTRACT

Integrated CO2 capture and utilization (ICCU) technology requires dual functional materials (DFMs) to carry out the process in a single reaction system. The influence of the calcination atmosphere on efficiency of 4% Ru-8% Na2CO3-8% CaO/γ-Al2O3 DFM is studied. The adsorbent precursors are first co-impregnated onto alumina and calcined in air. Then, Ru precursor is impregnated and four aliquotes are subjected to different calcination protocols: static air in muffle or under different mixtures (10% H2/N2, 50% H2/N2 and N2) streams. Samples are characterized by XRD, N2 adsorption-desorption, H2 chemisorption, TEM, XPS, H2-TPD, H2-TPR, CO2-TPD and TPSR. The catalytic behavior is evaluated, in cycles of CO2 adsorption and hydrogenation to CH4, and temporal evolution of reactants and products concentrations is analyzed. The calcination atmosphere influences the physicochemical properties and, ultimately, activity of DFMs. Characterization data and catalytic performance discover the acccomodation of Ru nanoparticles disposition and basic sites is mostly influencing the catalytic activity. DFM calcined under N2 flow (RuNaCa-N2) shows the highest CH4 production (449 µmol/g at 370°C), because a well-controlled decomposition of precursors which favors the better accomodation of adsorbent and Ru phases, maximizing the specific surface area, the Ru-basic sites interface and the participation of different basic sites in the CO2 methanation reaction. Thus, the calcination in a N2 flow is revealed as the optimal calcination protocol to achieve highly efficient DFM for integrated CO2 adsorption and hydrogenation applications.


Subject(s)
Aluminum Oxide , Carbon Dioxide , Adsorption , Hydrogenation , Atmosphere , Ions
2.
Materials (Basel) ; 14(13)2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34203405

ABSTRACT

The combustion of lean methane was studied over palladium, rhodium, platinum, and ruthenium catalysts supported on hydroxyapatite (HAP). The samples were prepared by wetness impregnation and thoroughly characterized by BET, XRD, UV-Vis-NIR spectroscopy, H2-TPR, OSC, CO chemisorption, and TEM techniques. It was found that the Pd/HAP and Rh/HAP catalysts exhibited a higher activity compared with Pt/HAP and Ru/HAP samples. Thus, the degree of oxidation of the supported metal under the reaction mixture notably influenced its catalytic performance. Although Pd and Rh catalysts could be easily re-oxidized, the re-oxidation of Pt and Ru samples appeared to be a slow process, resulting in small amounts of metal oxide active sites. Feeding water and CO2 was found to have a negative effect, which was more pronounced in the presence of water, on the activity of Pd and Rh catalysts. However, the inhibiting effect of CO2 and H2O decreased by increasing the reaction temperature.

3.
ACS Omega ; 4(12): 14699-14713, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31552309

ABSTRACT

Cu/SAPO-34 catalysts are prepared using solid-state ion exchange (SSIE) and liquid ion exchange (LIE). SSIE is conducted by calcining a physical mixture of H-SAPO-34 zeolite and CuO nanoparticles at elevated temperatures (500-800 °C). The conventional LIE method is conducted by exchanging Na-SAPO-34 with Cu(COOCH3)2 aqueous solution with a final calcination step at 500 °C. Catalysts were fully characterized, focusing on Cu species identification. The NH3-SCR activity is evaluated for NO x removal. Cu/SAPO-34 catalysts synthesized by SSIE at 700 °C achieved an optimal reaction rate, which was correlated with a higher proportion of Cu2+ ions. The activation energies of Cu/SAPO-34 catalysts prepared by SSIE and LIE with varying copper loadings are 32-38 and 42-47 kJ mol-1, respectively. The SSIE catalysts achieve higher turnover frequency than LIE catalysts for a similar copper content, which decreases on increasing the copper loading. These results provide evidence that Cu ions exchanged into the Cu/SAPO-34 catalysts synthesized by SSIE present higher activity than those prepared by LIE for NO x removal by NH3-SCR.

4.
J Hazard Mater ; 181(1-3): 426-31, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20605680

ABSTRACT

Present paper studies the influence of electrochemically generated mixed oxidants on the physicochemical properties of natural organic matter, and especially from the disinfection by-products formation point of view. The study was carried out in a full scale water treatment plant. Results indicate that mixed oxidants favor humic to non-humic conversion of natural organic matter. Primary treatment preferentially removes the more hydrophobic fraction. This converted the non-humic fraction in an important source of disinfection by-products with a 20% contribution to the final trihalomethane formation potential (THMFP(F)) of the finished water. Enhanced coagulation at 40 mg l(-1) of polyaluminium chloride with a moderate mixing intensity (80 rpm) and pH of 6.0 units doubled the removal efficiency of THMFP(F) achieved at full scale plant. However, gel permeation chromatography data revealed that low molecular weight fractions were still hardly removed. Addition of small amounts of powdered activated carbon, 50 mg l(-1), allowed reduction of coagulant dose by 50% whereas removal of THMFP(F) was maintained or even increased. In systems where mixed oxidants are used addition of powdered activated carbon allows complementary benefits by a further reduction in the THMFP(F) compared to the conventional only coagulation-flocculation-settling process.


Subject(s)
Charcoal/chemistry , Organic Chemicals/isolation & purification , Oxidants/chemistry , Water Purification/methods , Flocculation , Powders/chemistry , Trihalomethanes/chemical synthesis , Waste Management/methods
5.
Chemosphere ; 68(6): 1004-12, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17395240

ABSTRACT

The catalytic activity and selectivity of manganese zirconia mixed oxides were evaluated for the oxidation of two common chlorinated pollutants found in waste streams, namely 1,2-dichloroethane (DCE) and trichloroethylene (TCE). Mixed oxides with varying Mn-Zr content were prepared by coprecipitation via nitrates, and subsequent calcination at 600 degrees C for 4 h in air. These catalysts were characterised by means of several techniques such as atomic emission spectrometry, N2 adsorption-desorption, powder X-ray diffraction, temperature-programmed desorption of ammonia, pyridine adsorption followed by diffuse reflectance infrared spectroscopy and temperature-programmed reduction with hydrogen. The active catalytic behaviour of Mn-Zr mixed oxides was ascribed to a substantial surface acidity combined with readily accessible active oxygen species. Hence, the mixed oxide with 40 mol% manganese content was found to be an optimum catalyst for the combustion of both chlorocarbons with a T50 value around 305 and 315 degrees C for DCE and TCE oxidation, respectively. The major oxidation products were carbon dioxide, hydrogen chloride and chlorine. It was observed that the formation of both CO2 and Cl2 was promoted with Mn loading.


Subject(s)
Ethylene Dichlorides/chemistry , Manganese/chemistry , Oxides/chemistry , Trichloroethylene/chemistry , Zirconium/chemistry , Catalysis , Gases/chemistry
6.
Article in English | MEDLINE | ID: mdl-16835106

ABSTRACT

Chloroform formation from chlorination of aquatic humic and fulvic acid solutions was studied. Second order overall kinetic model was assumed, first order with respect to chlorine and precursor content. Rate constants have been measured, resulting in values that varied significantly with reaction conditions, in the range of 0.177-7.206 [L/ mmol h], mainly for fulvic acid. The activation energy deduced from experiments carried out at different temperatures also increased notably when decreasing pH from 8 to 7. Increases of up to 60% were computed, where highest values were measured for humic acid. It is noteworthy the dependence observed on reaction time: higher activation energy resulted for longest reaction periods. Differences in the range of 40% have been reported. This effect is attributed to the existence of simultaneous reactions, each with different activation energy, competing for trihalomethanes formation.


Subject(s)
Benzopyrans/chemistry , Chlorine Compounds , Chloroform/analysis , Humic Substances/analysis , Models, Chemical , Water Pollutants, Chemical/analysis , Disinfection , Kinetics , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...