Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mov Disord ; 37(2): 343-353, 2022 02.
Article in English | MEDLINE | ID: mdl-34752656

ABSTRACT

BACKGROUND: Huntington's disease is a neurodegenerative disorder characterized by clinical alterations in the motor, behavioral, and cognitive domains. However, the structure and disruptions to large-scale brain cognitive networks have not yet been established. OBJECTIVE: We aimed to profile changes in large-scale cognitive networks in premanifest and symptomatic patients with Huntington's disease. METHODS: We prospectively recruited premanifest and symptomatic Huntington's disease mutation carriers as well as healthy controls. Clinical and sociodemographic data were obtained from all participants, and resting-state functional connectivity data, using both time-averaged and dynamic functional connectivity, was acquired from whole-brain and cognitively oriented brain parcellations. RESULTS: A total of 64 gene mutation carriers and 23 healthy controls were included; 21 patients with Huntington's disease were classified as premanifest and 43 as symptomatic Huntington's disease. Compared with healthy controls, patients with Huntington's disease showed decreased network connectivity within the posterior hubs of the default-mode network and the medial prefrontal cortex, changes that correlated with cognitive (t = 2.25, P = 0.01) and disease burden scores (t = -2.42, P = 0.009). The salience network showed decreased functional connectivity between insular and supramarginal cortices and also correlated with cognitive (t = 2.11, P = 0.02) and disease burden scores (t = -2.35, P = 0.01). Dynamic analyses showed that network variability was decreased for default-central executive networks, a feature already present in premanifest mutation carriers (dynamic factor 8, P = 0.02). CONCLUSIONS: Huntington's disease shows an early and widespread disruption of large-scale cognitive networks. Importantly, these changes are related to cognitive and disease burden scores, and novel dynamic functional analyses uncovered subtler network changes even in the premanifest stages.


Subject(s)
Huntington Disease , Brain/diagnostic imaging , Brain Mapping , Cognition , Humans , Huntington Disease/diagnostic imaging , Huntington Disease/genetics , Magnetic Resonance Imaging
2.
Sci Rep ; 11(1): 19692, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34608211

ABSTRACT

The relationship between human brain connectomics and genetic evolutionary traits remains elusive due to the inherent challenges in combining complex associations within cerebral tissue. In this study, insights are provided about the relationship between connectomics, gene expression and divergent evolutionary pathways from non-human primates to humans. Using in vivo human brain resting-state data, we detected two co-existing idiosyncratic functional systems: the segregation network, in charge of module specialization, and the integration network, responsible for information flow. Their topology was approximated to whole-brain genetic expression (Allen Human Brain Atlas) and the co-localization patterns yielded that neuron communication functionalities-linked to Neuron Projection-were overrepresented cell traits. Homologue-orthologue comparisons using dN/dS-ratios bridged the gap between neurogenetic outcomes and biological data, summarizing the known evolutionary divergent pathways within the Homo Sapiens lineage. Evidence suggests that a crosstalk between functional specialization and information flow reflects putative biological qualities of brain architecture, such as neurite cellular functions like axonal or dendrite processes, hypothesized to have been selectively conserved in the species through positive selection. These findings expand our understanding of human brain function and unveil aspects of our cognitive trajectory in relation to our simian ancestors previously left unexplored.


Subject(s)
Brain/physiology , Connectome , Evolution, Molecular , Quantitative Trait, Heritable , Adult , Biological Evolution , Brain Mapping , Data Analysis , Female , Humans , Image Processing, Computer-Assisted , Male , Young Adult
3.
Am J Clin Nutr ; 113(6): 1627-1635, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33733657

ABSTRACT

BACKGROUND: The number of APOE-ε4 alleles is a major nonmodifiable risk factor for sporadic Alzheimer disease (AD). There is increasing evidence on the benefits of dietary DHA (22:6n-3) before the onset of AD symptoms, particularly in APOE-ε4 carriers. Brain alterations in the preclinical stage can be detected by structural MRI. OBJECTIVES: We aimed, in middle-aged cognitively unimpaired individuals at increased risk of AD, to cross-sectionally investigate whether dietary DHA intake relates to cognitive performance and to MRI-based markers of cerebral small vessel disease and AD-related neurodegeneration, exploring the effect modification by APOE-ε4 status. METHODS: In 340 participants of the ALFA (ALzheimer and FAmilies) study, which is enriched for APOE-ε4 carriership (n = 122, noncarriers; n = 157, 1 allele; n = 61, 2 alleles), we assessed self-reported DHA intake through an FFQ. We measured cognitive performance by administering episodic memory and executive function tests. We performed high-resolution structural MRI to assess cerebral small vessel disease [white matter hyperintensities (WMHs) and cerebral microbleeds (CMBs)] and AD-related brain atrophy (cortical thickness in an AD signature). We constructed regression models adjusted for potential confounders, exploring the interaction DHA × APOE-ε4. RESULTS: We observed no significant associations between DHA and cognitive performance or WMH burden. We observed a nonsignificant inverse association between DHA and prevalence of lobar CMBs (OR: 0.446; 95% CI: 0.195, 1.018; P = 0.055). DHA was found to be significantly related to greater cortical thickness in the AD signature in homozygotes but not in nonhomozygotes (P-interaction = 0.045). The association strengthened when analyzing homozygotes and nonhomozygotes matched for risk factors. CONCLUSIONS: In cognitively unimpaired APOE-ε4 homozygotes, dietary DHA intake related to structural patterns that may result in greater resilience to AD pathology. This is consistent with the current hypothesis that those subjects at highest risk would obtain the largest benefits from DHA supplementation in the preclinical stage.This trial was registered at clinicaltrials.gov as NCT01835717.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/prevention & control , Apolipoprotein E4/genetics , Brain/diagnostic imaging , Docosahexaenoic Acids/administration & dosage , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Brain/blood supply , Brain/pathology , Cross-Sectional Studies , Genetic Predisposition to Disease , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...