Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Front Endocrinol (Lausanne) ; 13: 954127, 2022.
Article in English | MEDLINE | ID: mdl-36568067

ABSTRACT

Objective: The primary objectives of this pilot study were to assess cognition and cerebral metabolic rate of oxygen (CMRO2) consumption in people with severe obesity before (baseline), and again, 2- and 14-weeks after sleeve gastrectomy bariatric surgery. Methods: Six people with severe/class 3 obesity (52 ± 10 years, five females, body mass index (BMI) = 41.9 ± 3.9 kg/m2), and 10 normal weight sex- and age-matched healthy controls (HC) (48 ± 6 years, eight females, 22.8 ± 1.9 kg/m2). Global CMRO2 was measured non-invasively using MRI and cognition using the Integneuro testing battery. Results: Following a sleeve gastrectomy induced weight loss of 6.4 ± 2.5 kg (% total-body-weight-lost = 5.4) over two-weeks, cognition total scores improved by 0.8 ± 0.5 T-scores (p=0.03, 15.8% improvement from baseline). Weight loss over 14-weeks post-surgery was 15.4 ± 3.6 kg (% total-body-weight-lost = 13.0%) and cognition improved by 1.1 ± 0.4 (p=0.003, 20.6% improvement from baseline). At 14-weeks, cognition was 6.4 ± 0.7, comparable to 6.0 ± 0.6 observed in the HC group. Baseline CMRO2 was significantly higher compared to the HC (230.4 ± 32.9 vs. 177.9 ± 33.9 µmol O2/100 g/min, p=0.02). Compared to baseline, CMRO2 was 234.3 ± 16.2 µmol O2/100 g/min at 2-weeks after surgery (p=0.8, 1.7% higher) and 217.3 ± 50.4 at 14-weeks (p=0.5, 5.7% lower) after surgery. 14-weeks following surgery, CMRO2 was similar to HC (p=0.17). Conclusion: Sleeve gastrectomy induced weight loss was associated with an increase in cognition and a decrease in CMRO2 observed 14-weeks after surgery. The association between weight loss, improved cognition and CMRO2 decrease should be evaluated in larger future studies.


Subject(s)
Bariatric Surgery , Oxygen , Female , Humans , Adult , Middle Aged , Pilot Projects , Brain , Obesity , Cognition , Weight Loss
2.
Article in English | MEDLINE | ID: mdl-32082607

ABSTRACT

BACKGROUND: Bariatric surgery is an effective long-term weight loss strategy yielding improvements in neurocognitive function; however, the mechanism(s) responsible for these improvements remains unclear. Here, we assessed the feasibility of using magnetic resonance imaging (MRI) to evaluate whether cerebral vascular reactivity (CVR) is impaired in severely obese bariatric surgery candidates compared with normal weight healthy controls and whether CVR improves following bariatric surgery. We also investigated whether changes in CVR were associated with changes in cognitive function. METHODS: Bariatric surgery candidates (n = 6) were compared with normal weight healthy controls of a similar age (n = 10) at baseline, and then reassessed 2 weeks and 14 weeks following sleeve gastrectomy bariatric surgery. Young reference controls (n = 7) were also studied at baseline to establish the range of normal for each outcome measure. Microvascular and macrovascular CVR to hypercapnia (5% CO2) were assessed using blood-oxygen-level-dependent (BOLD) MRI, and changes in the middle cerebral artery (MCA) cross-sectional area, respectively. Cognitive function was assessed using a validated neurocognitive software. RESULTS: Compliance with the CVR protocol was high. Both macro- and micro-cerebrovascular function were highest in the young reference controls. Cognitive function was lower in obese bariatric surgery candidates compared with normal weight controls, and improved by 17% at 2 weeks and 21% by 14 weeks following bariatric surgery. To our surprise, whole-brain CVR BOLD did not differ between obese bariatric surgery candidates and normal weight controls of similar age (0.184 ± 0.101 vs. 0.192 ± 0.034 %BOLD/mmHgCO2), and did not change after bariatric surgery. In contrast, we observed vasoconstriction of the MCA during hypercapnia in 60% of the obese patients prior to surgery, which appeared to be abolished following bariatric surgery. Improvements in cognitive function were not associated with improvements in either CVR BOLD or MCA vasodilation after bariatric surgery. CONCLUSIONS: Assessing CVR responses to a hypercapnic challenge with MRI was feasible in severely obese bariatric patients. However, no changes in whole-brain BOLD CVR were observed following bariatric surgery despite improvements in cognitive function. We recommend that future large trials assess CVR responses to cognitive tasks (rather than hypercapnia) to better define the mechanisms responsible for cognitive function improvements following bariatric surgery.

3.
Langmuir ; 30(28): 8481-90, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24988144

ABSTRACT

A simple and robust nanolithographic method that allows sub-100 nm chemical patterning on a range of oxide surfaces was developed in order to fabricate nanoarrays of plant light-harvesting LHCII complexes. The site-specific immobilization and the preserved functionality of the LHCII complexes were confirmed by fluorescence emission spectroscopy. Nanopatterned LHCII trimers could be reversibly switched between fluorescent and quenched states by controlling the detergent concentration in the imaging buffer. A 3-fold quenching of the average fluorescence intensity was accompanied by a decrease in the average (amplitude-weighted) fluorescence lifetime from approximately 2.24 ns to approximately 0.4 ns, attributed to the intrinsic ability of LHCII to switch between fluorescent and quenched states upon changes in its conformational state. The nanopatterning methodology was extended by immobilizing a second protein, the enhanced green fluorescent protein (EGFP), onto LHCII-free areas of the chemically patterned surfaces. This very simple surface chemistry, which allows simultaneous selective immobilization and therefore sorting of the two types of protein molecules on the surface, is a key underpinning step toward the integration of LHCII into switchable biohybrid antenna constructs.


Subject(s)
Light-Harvesting Protein Complexes/chemistry , Chlorophyll/chemistry , Photosystem II Protein Complex/chemistry , Spectrometry, Fluorescence , Spinacia oleracea/metabolism
4.
Nat Commun ; 5: 3892, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24861488

ABSTRACT

Metamaterials and metasurfaces represent a remarkably versatile platform for light manipulation, biological and chemical sensing, and nonlinear optics. Many of these applications rely on the resonant nature of metamaterials, which is the basis for extreme spectrally selective concentration of optical energy in the near field. In addition, metamaterial-based optical devices lend themselves to considerable miniaturization because of their subwavelength features. This additional advantage sets metamaterials apart from their predecessors, photonic crystals, which achieve spectral selectivity through their long-range periodicity. Unfortunately, spectral selectivity of the overwhelming majority of metamaterials that are made of metals is severely limited by high plasmonic losses. Here we propose and demonstrate Fano-resonant all-dielectric metasurfaces supporting optical resonances with quality factors Q>100 that are based on CMOS-compatible materials: silicon and its oxide. We also demonstrate that these infrared metasurfaces exhibit extreme planar chirality, opening exciting possibilities for efficient ultrathin circular polarizers and narrow-band thermal emitters of circularly polarized radiation.

5.
ACS Nano ; 7(9): 7824-32, 2013 Sep 24.
Article in English | MEDLINE | ID: mdl-23952969

ABSTRACT

Interference of optically induced electric and magnetic modes in high-index all-dielectric nanoparticles offers unique opportunities for tailoring directional scattering and engineering the flow of light. In this article we demonstrate theoretically and experimentally that the interference of electric and magnetic optically induced modes in individual subwavelength silicon nanodisks can lead to the suppression of resonant backscattering and to enhanced resonant forward scattering of light. To this end we spectrally tune the nanodisk's fundamental electric and magnetic resonances with respect to each other by a variation of the nanodisk aspect ratio. This ability to tune two modes of different character within the same nanoparticle provides direct control over their interference, and, in consequence, allows for engineering the particle's resonant and off-resonant scattering patterns. Most importantly, measured and numerically calculated transmittance spectra reveal that backward scattering can be suppressed and forward scattering can be enhanced at resonance for the particular case of overlapping electric and magnetic resonances. Our experimental results are in good agreement with calculations based on the discrete dipole approach as well as finite-integral frequency-domain simulations. Furthermore, we show useful applications of silicon nanodisks with tailored resonances as optical nanoantennas with strong unidirectional emission from a dipole source.

6.
Opt Express ; 20(2): 1903-11, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22274535

ABSTRACT

We demonstrate electrically-controlled active tuning of mid-infrared metamaterial resonances using depletion-type devices. The depletion width in an n-doped GaAs epilayer changes with an electric bias, inducing a change of the permittivity of the substrate and leading to frequency tuning of the resonance. We first present our detailed theoretical analysis and then explain experimental data of bias-dependent metamaterial transmission spectra. This electrical tuning is generally applicable to a variety of infrared metamaterials and plasmonic structures, which can find novel applications in chip-scale active infrared devices.


Subject(s)
Infrared Rays , Manufactured Materials , Models, Theoretical , Surface Plasmon Resonance/instrumentation , Arsenicals/chemistry , Electric Conductivity , Equipment Design , Gallium/chemistry , Metals/chemistry , Microscopy/instrumentation , Semiconductors/instrumentation
7.
ACS Nano ; 4(7): 3831-8, 2010 Jul 27.
Article in English | MEDLINE | ID: mdl-20536187

ABSTRACT

Near-field scanning microwave microscopy is employed for quantitative imaging at 4 GHz of the local impedance for monolayer and few-layer graphene. The microwave response of graphene is found to be thickness dependent and determined by the local sheet resistance of the graphene flake. Calibration of the measurement system and knowledge of the probe geometry allows evaluation of the AC impedance for monolayer and few-layer graphene, which is found to be predominantly active. The use of localized evanescent electromagnetic field in our experiment provides a promising tool for investigations of plasma waves in graphene with wave numbers determined by the spatial spectrum of the near-field. By using near-field microwave microscopy one can perform simultaneous imaging of location, geometry, thickness, and distribution of electrical properties of graphene without a need for device fabrication.

8.
Appl Radiat Isot ; 67(1): 14-20, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18930656

ABSTRACT

An automated procedure for the determination of (90)Sr was adapted from existing methods of flow scintillation analysis (FSA) for use on aqueous samples with low levels of activity (<1000 dpm per sample). This technique employs high-performance extraction chromatography (HPEC) and an on-line liquid scintillation counter to provide automated separation and subsequent detection of (90)Sr. The total analysis time is 30 min per sample. Dilute urine samples, spiked with (90)Sr, were also processed by this method to test the application of this technique for bioassay monitoring.


Subject(s)
Environmental Monitoring/methods , Scintillation Counting/methods , Strontium Radioisotopes/analysis , Animals , Chromatography , Humans , Solutions , Strontium Radioisotopes/urine , Water
9.
J Sep Sci ; 30(10): 1575-82, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17623439

ABSTRACT

The separation of trace level actinides has been evaluated on extraction chromatography columns. Detection of the actinides was achieved through the use of an inductively coupled plasma MS (ICP-MS). The columns that we tested were prepared from a commercial TRU resin. The separation of the actinides was optimized for several parameters including particle size, column length, packing pressure, and eluent flow rate. We also examined the possibility of reducing or eliminating oxalic acid in the eluents in order to improve the performance of the mass spectrometer. We were able to separate a mixture of five actinides ((232)Th,( 238)U,( 237)Np, (239)Pu,( 243)Am) in less than 4 min. This work has application to rapid bioassay as well as for automated separations of actinide materials.


Subject(s)
Actinoid Series Elements/analysis , Chromatography, Ion Exchange , Mass Spectrometry , Chromatography, Ion Exchange/instrumentation , Chromatography, Ion Exchange/methods , Humans , Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Particle Size , Reproducibility of Results , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...