Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Cell Cycle ; 23(4): 405-434, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38640424

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is identified as the functional receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the ongoing global coronavirus disease-2019 (COVID-19) pandemic. This study aimed to elucidate potential therapeutic avenues by scrutinizing approved drugs through the identification of the genetic signature associated with SARS-CoV-2 infection in individuals with asthma. This exploration was conducted through an integrated analysis, encompassing interaction networks between the ACE2 receptor and common host (co-host) factors implicated in COVID-19/asthma comorbidity. The comprehensive analysis involved the identification of common differentially expressed genes (cDEGs) and hub-cDEGs, functional annotations, interaction networks, gene set variation analysis (GSVA), gene set enrichment analysis (GSEA), and module construction. Interaction networks were used to identify overlapping disease modules and potential drug targets. Computational biology and molecular docking analyzes were utilized to discern functional drug modules. Subsequently, the impact of the identified drugs on the expression of hub-cDEGs was experimentally validated using a mouse model. A total of 153 cDEGs or co-host factors associated with ACE2 were identified in the COVID-19 and asthma comorbidity. Among these, seven significant cDEGs and proteins - namely, HRAS, IFNG, JUN, CDH1, TLR4, ICAM1, and SCD-were recognized as pivotal host factors linked to ACE2. Regulatory network analysis of hub-cDEGs revealed eight top-ranked transcription factors (TFs) proteins and nine microRNAs as key regulatory factors operating at the transcriptional and post-transcriptional levels, respectively. Molecular docking simulations led to the proposal of 10 top-ranked repurposable drug molecules (Rapamycin, Ivermectin, Everolimus, Quercetin, Estradiol, Entrectinib, Nilotinib, Conivaptan, Radotinib, and Venetoclax) as potential treatment options for COVID-19 in individuals with comorbid asthma. Validation analysis demonstrated that Rapamycin effectively inhibited ICAM1 expression in the HDM-stimulated mice group (p < 0.01). This study unveils the common pathogenesis and genetic signature underlying asthma and SARS-CoV-2 infection, delineated by the interaction networks of ACE2-related host factors. These findings provide valuable insights for the design and discovery of drugs aimed at more effective therapeutics within the context of lung disease comorbidities.


Subject(s)
Angiotensin-Converting Enzyme 2 , Asthma , COVID-19 Drug Treatment , COVID-19 , Comorbidity , Drug Repositioning , Molecular Docking Simulation , SARS-CoV-2 , Drug Repositioning/methods , Asthma/drug therapy , Asthma/genetics , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Humans , COVID-19/genetics , COVID-19/virology , Mice , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Gene Regulatory Networks/drug effects , Computational Biology/methods , MicroRNAs/genetics , MicroRNAs/metabolism
3.
Open Life Sci ; 18(1): 20220770, 2023.
Article in English | MEDLINE | ID: mdl-38045489

ABSTRACT

Cervical cancer is one of the most dangerous and widespread illnesses afflicting women throughout the globe, particularly in East Africa and South Asia. In industrialised nations, the incidence of cervical cancer has consistently decreased over the past few decades. However, in developing countries, the reduction in incidence has been considerably slower, and in some instances, the incidence has increased. Implementing routine screenings for cervical cancer is something that has to be done to protect the health of women. Cervical cancer is famously difficult to diagnose and cure due to the slow rate at which it spreads and develops into more advanced stages of the disease. Screening for cervical cancer using a Pap smear, more often referred to as a Pap test, has the potential to detect the illness in its earlier stages. For the purpose of selecting features for this article, a gray level co-occurrence matrix (GLCM) technique was used. Following this step, classification is performed with methods such as convolutional neural network (CNN), support vector machine, and auto encoder. According to the findings of this experiment, the GLCM-CNN classifier proved to be the one with the highest degree of precision.

4.
J Reprod Immunol ; 160: 104159, 2023 12.
Article in English | MEDLINE | ID: mdl-37913711

ABSTRACT

Oligospermia and asthenozoospermia, both frequent, can lead to male infertility. Oligospermia might be viewed as a milder form of azoospermia because the same mutations that produce azoospermia in some individuals also create oligospermia in other individuals. In this, we looked at different characteristics of oligospermia men, counting the level of apoptosis and a few related apoptotic and oxidative stress components, and compared them to solid controls. In this study, semen samples from healthy fertile men (n = 35) and oligospermia (n = 35) were collected, and sperm death rates in both groups were examined using flow cytometry. Also, gene expression of apoptotic and anti-apoptotic markers and miR-221 were investigated (Real-Time PCR). Moreover, for the evaluation of catalase and SOD activity and anti-inflammatory cytokines, including IL-10 and TGF-ß, the specific ELISA kits and procedures were applied. As a result, higher gene and protein expression levels of PTEN, P27, and P57 were observed in patients with oligospermia. In contrast, lower mRNA expression of AKT and miR-221 was detected in this group. In addition, IL-10, TGF-ß, and catalase activity were suppressed in the oligospermia group compared with healthy men samples. Moreover, the frequency of apoptosis of sperm cells is induced in patients. In conclusion, apoptosis-related markers, PTEN, and the measurement of significant and efficient oxidative stress markers like SOD and catalase in semen plasma could be considered as the critical diagnostic markers for oligospermia. Future studies will be better able to treat oligospermia by showing whether these indicators are rising or falling.


Subject(s)
Azoospermia , MicroRNAs , Oligospermia , Humans , Male , Oligospermia/genetics , Azoospermia/genetics , Azoospermia/diagnosis , Azoospermia/metabolism , Catalase/genetics , Catalase/metabolism , Interleukin-10/metabolism , Semen/metabolism , Spermatozoa/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Superoxide Dismutase/metabolism , Transforming Growth Factor beta/metabolism
5.
Life Sci ; 333: 122139, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37783266

ABSTRACT

AIMS: Pain is a profoundly debilitating symptom in cancer patients, leading to disability, immobility, and a marked decline in their quality of life. This study aimed to investigate the potential roles of miR-199a-3p in a murine model of bone cancer pain induced by tumor cell implantation in the medullary cavity of the femur. MATERIALS AND METHODS: We assessed pain-related behaviors, including the paw withdrawal mechanical threshold (PWMT) and the number of spontaneous flinches (NSF). To investigate miRNA expression and its targets in astrocytes, we employed a combination of RNA-seq analysis, qRT-PCR, Western blotting, EdU, TUNEL, ChIP, ELISA, and luciferase reporter assays in mice (C3H/HeJ) with bone cancer pain and control groups. KEY FINDINGS: On days 10, 14, 21, and 28 post-surgery, we observed significant differences in PWTL, PWMT, and NSF when compared to the sham group (P < 0.001). qRT-PCR assays and miRNA sequencing results confirmed reduced miR-199a-3p expression in astrocytes of mice with bone cancer pain. Gain- and loss-of-function experiments demonstrated that miR-199a-3p suppressed astrocyte activation and the expression of inflammatory cytokines. In vitro investigations revealed that miR-199a-3p mimics reduced the levels of inflammatory factors in astrocytes and MyD88/NF-κB proteins. Furthermore, treatment with a miR-199a-3p agonist resulted in reduced expression of MyD88, TAK1, p-p65, and inflammatory mediators, along with decreased astrocyte activation in the spinal cord. SIGNIFICANCE: Collectively, these findings demonstrate that upregulation of miR-199a-3p may offer a therapeutic avenue for mitigating bone cancer pain in mice by suppressing neuroinflammation and inhibiting the MyD88/NF-κB signaling pathway.


Subject(s)
Bone Neoplasms , Cancer Pain , MicroRNAs , Osteosarcoma , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Bone Neoplasms/complications , Bone Neoplasms/genetics , Cancer Pain/genetics , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Mice, Inbred C3H , MicroRNAs/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Neuroinflammatory Diseases , NF-kappa B/metabolism , Osteosarcoma/genetics , Quality of Life
6.
Int Immunopharmacol ; 123: 110728, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572506

ABSTRACT

T helper (Th) 17 cells are one of the most important T cell subsets in a number of autoimmune and chronic inflammatory diseases. During infections, Th17 cells appear to play an important role in the clearance of extracellular pathogens. Th17 cells, on the other hand, are engaged in inflammation and have been linked to the pathophysiology of a number of autoimmune illnesses and human inflammatory disorders. A diverse group of RNA molecules known as lncRNAs serve critical functions in gene expression regulation. They may interact with a wide range of molecules, including DNA, RNA, and proteins, and have a complex structure. LncRNAs, which have restricted or no protein-coding activity, are implicated in a number of illnesses due to their regulatory impact on a variety of biological processes such as cell proliferation, apoptosis, and differentiation. Several lncRNAs have been associated with Th7 cell development in the context of immune cell differentiation. In this article, we cover new studies on the involvement of lncRNAs in Th17 cell differentiation in a variety of disorders, including auto-immune diseases, malignancies, asthma, heart disease, and infections.


Subject(s)
RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Cell Differentiation , Gene Expression Regulation , T-Lymphocyte Subsets , Th17 Cells
7.
Int Immunopharmacol ; 122: 110531, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37437434

ABSTRACT

Autoimmune diseases are complex, chronic inflammatory conditions initiated by the loss of immunological tolerance to self-antigens. Nowadays, there is no effective and useful therapy for autoimmune diseases, and the existing medications have some limitations due to their nonspecific targets and side effects. During the last few decades, it has been established that mesenchymal stem cells (MSCs) have immunomodulatory functions. It is proposed that MSCs can exert an important therapeutic effect on autoimmune disorders. In parallel with these findings, several investigations have shown that MSCs alleviate autoimmune diseases. Intriguingly, the results of studies have demonstrated that the effective roles of MSCs in autoimmune diseases do not depend on direct intercellular communication but on their ability to release a wide spectrum of paracrine mediators such as growth factors, cytokines and extracellular vehicles (EVs). EVs that range from 50 to 5,000 nm were produced by almost any cell type, and these nanoparticles participate in homeostasis and intercellular communication via the transfer of a broad range of biomolecules such as modulatory proteins, nucleic acids (DNA and RNA), lipids, cytokines, and metabolites. EVs derived from MSCs display the exact properties of MSCs and can be safer and more beneficial than their parent cells. In this review, we will discuss the features of MSCs and their EVs, EVs biogenesis, and their cargos, and then we will highlight the existing discoveries on the impacts of EVs from MSCs on autoimmune diseases such as multiple sclerosis, arthritis rheumatic, inflammatory bowel disease, Type 1 diabetes mellitus, systemic lupus erythematosus, autoimmune liver diseases, Sjögren syndrome, and osteoarthritis, suggesting a potential alternative for autoimmune conditions therapy.


Subject(s)
Autoimmune Diseases , Extracellular Vesicles , Mesenchymal Stem Cells , Osteoarthritis , Humans , Extracellular Vesicles/metabolism , Autoimmune Diseases/therapy , Autoimmune Diseases/metabolism , Osteoarthritis/metabolism , Mesenchymal Stem Cells/metabolism , Cytokines/metabolism
8.
Life Sci ; 329: 121968, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37487941

ABSTRACT

AIMS: Retinal ischemia/reperfusion (I/R) injury is a common pathological basis for various ophthalmic diseases. This study aimed to investigate the potential of sulforaphane (SFN) and Homer1a in regulating cell apoptosis induced by retinal I/R injury and to explore the underlying regulatory mechanism between them. MATERIALS AND METHODS: In in vivo experiments, C57BL/6J mice and Homer1flox/-/Homer1a+/-/Nestin-Cre+/- mice were used to construct retinal I/R injury models. In vitro experiments utilized the oxygen-glucose deprivation-reperfusion (OGD/R) injury model with primary retinal ganglion cells (RGCs). The effects of Homer1a and SFN on cell apoptosis were observed through pathological analyses, flow cytometry, and visual electrophysiological assessments. KEY FINDINGS: We discovered that after OGD/R injury, apoptosis of RGCs and intracellular Ca2+ activity significantly increased. However, these changes were reversed upon the addition of SFN, and similar observations were reproduced in in vivo studies. Furthermore, both in vivo and in vitro studies confirmed the upregulation of Homer1a after I/R, which could be further enhanced by the administration of SFN. Moreover, upregulation of Homer1a resulted in a reduction in cell apoptosis and pro-apoptotic proteins, while downregulation of Homer1a had the opposite effect. Flash visual evoked potential, oscillatory potentials, and escape latency measurements in mice supported these findings. Furthermore, the addition of SFN strengthened the neuroprotective effects in the OGD/R + H+ group but weakened them in Homer1flox/-/Homer1a+/-/Nestin-Cre+/- mice. SIGNIFICANCE: These results indicate that Homer1a plays a significant role in the therapeutic potential of sulforaphane for retinal I/R injury, thereby providing a theoretical basis for clinical treatment.


Subject(s)
Evoked Potentials, Visual , Reperfusion Injury , Mice , Animals , Nestin/pharmacology , Mice, Inbred C57BL , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Apoptosis
9.
Front Mol Biosci ; 10: 1189527, 2023.
Article in English | MEDLINE | ID: mdl-37333018

ABSTRACT

Background: Cancer-associated fibroblasts (CAFs) of ovarian cancer (OvC) are the most prevalent element of the tumor microenvironment (TM). By promoting angiogenesis, immunological suppression, and invasion, CAFs speed up the growth of tumors by changing the extracellular matrix's structure and composition and/or initiating the epithelial cells (EPT). IL-33/ST2 signaling has drawn a lot of attention since it acts as a pro-tumor alarmin and encourages spread by altering TM. Methods: Differentially expressed genes (DEGs) of the OvC tumor microenvironment were found in the GEO database, qRT-PCR, western blotting, and immunohistochemistry, and their presence and changes in healthy and tumor tissue content were examined. Primary cultures of healthy fibroblasts and CAFs obtained from healthy and tumor tissues retrieved from OvC samples were used for in vitro and in vivo investigations. Cultured primary human CAFs were utilized to investigate the regulation and the IL-33/ST2 axis role in the inflammation reactions. Results: Although ST2 and IL-33 expression was detected in both epithelial (EPT) and fibroblast cells of ovarian cancer, they are more abundant in CAFs. Lipopolysaccharides, serum amyloid A1, and IL-1ß, the inflammatory mediators, could all induce IL-33 expression through NF-κB activation in human CAFs. In turn, via the ST2 receptor, IL-33 affected the production of IL-6, IL-1ß, and PTGS2 in human CAFs via the MAPKs-NF-κB pathway. Conclusion: Our findings suggest that IL-33/ST2 is affected by the interaction of CAFs and epithelial cells inside the tumor microenvironment. Activation of this axis leads to increased expression of inflammatory factors in tumor CAFs and EPT cells. Therefore, targeting the IL-33/ST2 axis could have potential value in the prevention of OvC progression.

10.
Environ Res ; 233: 116490, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37354932

ABSTRACT

The multidisciplinary approaches in treatment of cancer appear to be essential in term of bringing benefits of several disciplines and their coordination in tumor elimination. Because of the biological and malignant features of cancer cells, they have ability of developing resistance to conventional therapies such as chemo- and radio-therapy. Pancreatic cancer (PC) is a malignant disease of gastrointestinal tract in which chemotherapy and radiotherapy are main tools in its treatment, and recently, nanocarriers have been emerged as promising structures in its therapy. The bioresponsive nanocarriers are able to respond to pH and redox, among others, in targeted delivery of cargo for specific treatment of PC. The loading drugs on the nanoparticles that can be synthetic or natural compounds, can help in more reduction in progression of PC through enhancing their intracellular accumulation in cancer cells. The encapsulation of genes in the nanoparticles can protect against degradation and promotes intracellular accumulation in tumor suppression. A new kind of therapy for cancer is phototherapy in which nanoparticles can stimulate both photothermal therapy and photodynamic therapy through hyperthermia and ROS overgeneration to trigger cell death in PC. Therefore, synergistic therapy of phototherapy with chemotherapy is performed in accelerating tumor suppression. One of the important functions of nanotechnology is selective targeting of PC cells in reducing side effects on normal cells. The nanostructures are capable of being surface functionalized with aptamers, proteins and antibodies to specifically target PC cells in suppressing their progression. Therefore, a specific therapy for PC is provided and future implications for diagnosis of PC is suggested.


Subject(s)
Hyperthermia, Induced , Multifunctional Nanoparticles , Nanoparticles , Neoplasms , Pancreatic Neoplasms , Humans , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Phototherapy , Nanoparticles/chemistry , Pancreatic Neoplasms/drug therapy , Cell Line, Tumor , Pancreatic Neoplasms
11.
Pathol Res Pract ; 247: 154522, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37201467

ABSTRACT

Exosomes are now significant players in both healthy and unhealthy cell-to-cell communication. Exosomes can mediate immune activation or immunosuppression, which can influence the growth of tumors. Exosomes affect the immune responses to malignancies in various ways by interacting with tumor cells and the environment around them. Exosomes made by immune cells can control the growth, metastasis, and even chemosensitivity of tumor cells. In contrast, exosomes produced by cancer cells can encourage immune responses that support the tumor. Exosomes carry circular RNAs, long non-coding RNAs, and microRNAs (miRNAs), all involved in cell-to-cell communication. In this review, we focus on the most recent findings concerning the role of exosomal miRNAs, lncRNAs, and circRNAs in immune modulation and the potential therapeutic implications of these discoveries.


Subject(s)
MicroRNAs , Neoplasms , RNA, Long Noncoding , Humans , MicroRNAs/genetics , Neoplasms/genetics , Neoplasms/therapy , Cell Communication , RNA, Circular/genetics , RNA, Long Noncoding/genetics
12.
Hum Cell ; 36(4): 1253-1264, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37067766

ABSTRACT

Wound healing is a dynamic and complicated process containing overlapping phases. Presently, definitive therapy is not available, and the investigation into optimal wound care is influenced by the efficacy and cost-effectiveness of developing therapies. Accumulating evidence demonstrated the potential role of mesenchymal stem/stromal cell (MSC) therapy in several tissue injuries and diseases due to their high proliferation and differentiation abilities along with an easy collection procedure, low tumorigenesis, and immuno-privileged status. MSCs have also accelerated wound repair in all phases through their advantageous properties, such as accelerating wound closure, improving re-epithelialization, elevating angiogenesis, suppressing inflammation, and modulating extracellular matrix (ECM) remodeling. In addition, the beneficial therapeutic impacts of MSCs are largely associated with their paracrine functions, including extracellular vesicles (EVs). Exosomes and microvesicles are the two main subgroups of EVs. These vesicles are heterogeneous bilayer membrane structures that contain several proteins, lipids, and nucleic acids. EVs have emerged as a promising alternative to stem cell-based therapies because of their lower immunogenicity, tumorigenicity, and ease of management. MSCs from various sources have been widely investigated in skin wound healing and regeneration. Considering these features, in this review, we highlighted recent studies that the investigated therapeutic potential of various MSCs and MSC-EVs in skin damages and wounds.


Subject(s)
Exosomes , Extracellular Vesicles , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Extracellular Vesicles/metabolism , Exosomes/metabolism , Wound Healing , Mesenchymal Stem Cell Transplantation/methods
13.
Biomed Res Int ; 2023: 1742891, 2023.
Article in English | MEDLINE | ID: mdl-36865486

ABSTRACT

Cancer is characterized by abnormal cell growth and proliferation, which are both diagnostic indicators of the disease. When cancerous cells enter one organ, there is a risk that they may spread to adjacent tissues and eventually to other organs. Cancer of the cervix of the uterus often initially manifests itself in the uterine cervix, which is located at the very bottom of the uterus. Both the growth and death of cervical cells are characteristic features of this condition. False-negative results provide a significant moral dilemma since they may cause women to get an incorrect diagnosis of cancer, which in turn can result in the woman's premature death from the disease. False-positive results do not raise any significant ethical concerns; but they do require a patient to go through an expensive and time-consuming treatment process, and they also cause the patient to experience tension and anxiety that is not warranted. In order to detect cervical cancer in its earliest stages in women, a screening procedure known as a Pap test is often performed. This article describes a technique for improving images using Brightness Preserving Dynamic Fuzzy Histogram Equalization. To individual components and find the right area of interest, the fuzzy c-means approach is applied. The images are segmented using the fuzzy c-means method to find the right area of interest. The feature selection algorithm is the ACO algorithm. Following that, categorization is carried out utilizing the CNN, MLP, and ANN algorithms.


Subject(s)
Deep Learning , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/diagnosis , Uterus , Algorithms , Anxiety
14.
Nutrients ; 15(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36904201

ABSTRACT

The question of whether variable risk factors and various nutrients are causally related to inflammatory bowel diseases (IBDs) has remained unanswered so far. Thus, this study investigated whether genetically predicted risk factors and nutrients play a function in the occurrence of inflammatory bowel diseases, including ulcerative colitis (UC), non-infective colitis (NIC), and Crohn's disease (CD), using Mendelian randomization (MR) analysis. Utilizing the data of genome-wide association studies (GWASs) with 37 exposure factors, we ran Mendelian randomization analyses based on up to 458,109 participants. Univariable and multivariable MR analyses were conducted to determine causal risk factors for IBD diseases. Genetic predisposition to smoking and appendectomy as well as vegetable and fruit intake, breastfeeding, n-3 PUFAs, n-6 PUFAs, vitamin D, total cholesterol, whole-body fat mass, and physical activity were related to the risk of UC (p < 0.05). The effect of lifestyle behaviors on UC was attenuated after correcting for appendectomy. Genetically driven smoking, alcohol consumption, appendectomy, tonsillectomy, blood calcium, tea intake, autoimmune diseases, type 2 diabetes, cesarean delivery, vitamin D deficiency, and antibiotic exposure increased the risk of CD (p < 0.05), while vegetable and fruit intake, breastfeeding, physical activity, blood zinc, and n-3 PUFAs decreased the risk of CD (p < 0.05). Appendectomy, antibiotics, physical activity, blood zinc, n-3 PUFAs, and vegetable fruit intake remained significant predictors in multivariable MR (p < 0.05). Besides smoking, breastfeeding, alcoholic drinks, vegetable and fruit intake, vitamin D, appendectomy, and n-3 PUFAs were associated with NIC (p < 0.05). Smoking, alcoholic drinks, vegetable and fruit intake, vitamin D, appendectomy, and n-3 PUFAs remained significant predictors in multivariable MR (p < 0.05). Our results provide new and comprehensive evidence demonstrating that there are approving causal effects of various risk factors on IBDs. These findings also supply some suggestions for the treatment and prevention of these diseases.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Diabetes Mellitus, Type 2 , Inflammatory Bowel Diseases , Humans , Mendelian Randomization Analysis , Diabetes Mellitus, Type 2/complications , Genome-Wide Association Study , Inflammatory Bowel Diseases/complications , Risk Factors , Colitis, Ulcerative/epidemiology , Crohn Disease/epidemiology , Vitamin D , Vegetables
15.
Biomedicines ; 11(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36979858

ABSTRACT

Recurrent pregnancy loss (RPL) occurs in approximately 5% of women. Despite an abundance of evidence, the molecular mechanism of RPL's pathology remains unclear. Here, we report the protective role of polo-like kinase 1 (PLK1) during RPL. We aimed to construct an RPL network utilizing GEO datasets and identified hub high-traffic genes. We also investigated whether the expressions of PLK1 were altered in the chorionic villi collected from women with RPL compared to those from healthy early pregnant women. Gene expression differences were evaluated using both pathway and gene ontology (GO) analyses. The identified genes were validated using in vivo and in vitro models. Mice with PLK1-overexpression and PLK1-knockdown in vitro models were produced by transfecting certain plasmids and si-RNA, respectively. The apoptosis in the chorionic villi, mitochondrial function, and NF-κB signaling activity was evaluated. To suppress the activation of PLK1, the PLK1 inhibitor BI2536 was administered. The HTR-8/SVneo and JEG-3 cell lines were chosen to establish an RPL model in vitro. The NF-κB signaling, Foxo signaling, PI3K/AKT, and endometrial cancer signaling pathways were identified via the RPL regulatory network. The following genes were identified: PLK1 as hub high-traffic gene and MMP2, MMP9, BAX, MFN1, MFN2, FOXO1, OPA1, COX15, BCL2, DRP1, FIS1, TRAF2, and TOP2A. Clinical samples were examined, and the results demonstrated that RPL patients had tissues with decreased PLK1 expression in comparison to women with normal pregnancies (p < 0.01). In vitro, PLK1 knockdown induced the NF-κB signaling pathway and apoptosis activation while decreasing cell invasion, migration, and proliferation (p < 0.05). Furthermore, the in vivo model proved that cell mitochondrial function and chorionic villi development are both hampered by PLK1 suppression. Our findings revealed that the PLK1/TRAF2/NF-κB axis plays a crucial role in RPL-induced chorionic villi dysfunction by regulating mitochondrial dynamics and apoptosis and might be a potential therapeutic target in the clinic.

16.
Eur J Med Res ; 28(1): 47, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36707899

ABSTRACT

Recently, mesenchymal stem/stromal cells (MSCs) therapy has become an emerging therapeutic modality for the treatment of inflammatory bowel disease (IBD), given their immunoregulatory and pro-survival attributes. MSCs alleviate dysregulated inflammatory responses through the secretion of a myriad of anti-inflammatory mediators, such as interleukin 10 (IL-10), transforming growth factor-ß (TGFß), prostaglandin E2 (PGE2), tumor necrosis factor-stimulated gene-6 (TSG-6), etc. Indeed, MSC treatment of IBD is largely carried out through local microcirculation construction, colonization and repair, and immunomodulation, thus alleviating diseases severity. The clinical therapeutic efficacy relies on to the marked secretion of various secretory molecules from viable MSCs via paracrine mechanisms that are required for gut immuno-microbiota regulation and the proliferation and differentiation of surrounding cells like intestinal epithelial cells (IECs) and intestinal stem cells (ISCs). For example, MSCs can induce IECs proliferation and upregulate the expression of tight junction (TJs)-associated protein, ensuring intestinal barrier integrity. Concerning the encouraging results derived from animal studies, various clinical trials are conducted or ongoing to address the safety and efficacy of MSCs administration in IBD patients. Although the safety and short-term efficacy of MSCs administration have been evinced, the long-term efficacy of MSCs transplantation has not yet been verified. Herein, we have emphasized the illumination of the therapeutic capacity of MSCs therapy, including naïve MSCs, preconditioned MSCs, and also MSCs-derived exosomes, to alleviate IBD severity in experimental models. Also, a brief overview of published clinical trials in IBD patients has been delivered.


Subject(s)
Inflammatory Bowel Diseases , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Inflammatory Bowel Diseases/therapy , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Cell Differentiation , Treatment Outcome , Cell- and Tissue-Based Therapy , Mesenchymal Stem Cell Transplantation/methods
17.
Comput Intell Neurosci ; 2022: 4948947, 2022.
Article in English | MEDLINE | ID: mdl-36017455

ABSTRACT

As Big Data, Internet of Things (IoT), cloud computing (CC), and other ideas and technologies are combined for social interactions. Big data technologies improve the treatment of financial data for businesses. At present, an effective tool can be used to forecast the financial failures and crises of small and medium-sized enterprises. Financial crisis prediction (FCP) plays a major role in the country's economic phenomenon. Accurate forecasting of the number and probability of failure is an indication of the development and strength of national economies. Normally, distinct approaches are planned for an effective FCP. Conversely, classifier efficiency and predictive accuracy and data legality could not be optimal for practical application. In this view, this study develops an oppositional ant lion optimizer-based feature selection with a machine learning-enabled classification (OALOFS-MLC) model for FCP in a big data environment. For big data management in the financial sector, the Hadoop MapReduce tool is used. In addition, the presented OALOFS-MLC model designs a new OALOFS algorithm to choose an optimal subset of features which helps to achieve improved classification results. In addition, the deep random vector functional links network (DRVFLN) model is used to perform the grading process. Experimental validation of the OALOFS-MLC approach was conducted using a baseline dataset and the results demonstrated the supremacy of the OALOFS-MLC algorithm over recent approaches.


Subject(s)
Big Data , Deep Learning , Algorithms , Cloud Computing , Machine Learning
18.
J Imaging ; 9(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36662108

ABSTRACT

BACKGROUND AND OBJECTIVES: Brain Tumor Fusion-based Segments and Classification-Non-enhancing tumor (BTFSC-Net) is a hybrid system for classifying brain tumors that combine medical image fusion, segmentation, feature extraction, and classification procedures. MATERIALS AND METHODS: to reduce noise from medical images, the hybrid probabilistic wiener filter (HPWF) is first applied as a preprocessing step. Then, to combine robust edge analysis (REA) properties in magnetic resonance imaging (MRI) and computed tomography (CT) medical images, a fusion network based on deep learning convolutional neural networks (DLCNN) is developed. Here, the brain images' slopes and borders are detected using REA. To separate the sick region from the color image, adaptive fuzzy c-means integrated k-means (HFCMIK) clustering is then implemented. To extract hybrid features from the fused image, low-level features based on the redundant discrete wavelet transform (RDWT), empirical color features, and texture characteristics based on the gray-level cooccurrence matrix (GLCM) are also used. Finally, to distinguish between benign and malignant tumors, a deep learning probabilistic neural network (DLPNN) is deployed. RESULTS: according to the findings, the suggested BTFSC-Net model performed better than more traditional preprocessing, fusion, segmentation, and classification techniques. Additionally, 99.21% segmentation accuracy and 99.46% classification accuracy were reached using the proposed BTFSC-Net model. CONCLUSIONS: earlier approaches have not performed as well as our presented method for image fusion, segmentation, feature extraction, classification operations, and brain tumor classification. These results illustrate that the designed approach performed more effectively in terms of enhanced quantitative evaluation with better accuracy as well as visual performance.

19.
J Nutr ; 150(10): 2673-2686, 2020 10 12.
Article in English | MEDLINE | ID: mdl-32886125

ABSTRACT

BACKGROUND: Recent meta-analyses suggest that the consumption of fermented dairy products reduces type 2 diabetes and cardiovascular disease (CVD) risk, although the underlying mechanisms remain unclear. OBJECTIVE: We evaluated whether dairy protein products modulated gut microbiota and cardiometabolic features in mouse models of diet-induced obesity and CVD. METHODS: Eight-week-old C57BL/6J wild-type (WT) and LDLr-/-ApoB100/100 (LRKO) male mice were fed for 12 and 24 wk, respectively, with a high-fat/high-sucrose diet [66% kcal lipids, 22% kcal carbohydrates (100% sucrose), 12% kcal proteins]. The protein sources of the 4 diets were 100% nondairy protein (NDP), or 50% of the NDP energy replaced by milk (MP), milk fermented by Lactobacillus helveticus (FMP), or Greek-style yogurt (YP) protein. Fecal 16S rRNA gene-based amplicon sequencing, intestinal gene expression, and glucose tolerance test were conducted. Hepatic inflammation and circulating adhesion molecules were measured by multiplex assays. RESULTS: Feeding WT mice for 12 wk led to a 74% increase in body weight, whereas after 24 wk the LRKO mice had a 101.5% increase compared with initial body weight. Compared with NDP and MP, the consumption of FMP and YP modulated the gut microbiota composition in a similar clustering pattern, upregulating the Streptococcus genus in both genotypes. In WT mice, feeding YP compared with NDP increased the expression of genes involved in jejunal (Reg3b, 7.3-fold, P = 0.049) and ileal (Ocln, 1.7-fold, P = 0.047; Il1-ß,1.7-fold, P = 0.038; Nos2, 3.8-fold, P = 0.018) immunity and integrity. In LRKO mice, feeding YP compared with MP improved insulin sensitivity by 65% (P = 0.039). In LRKO mice, feeding with FMP versus NDP attenuated hepatic inflammation (monocyte chemoattractant protein 1, 2.1-fold, P ˂ 0.0001; IL1-ß, 5.7-fold, P = 0.0003; INF-γ, 1.7-fold, P = 0.002) whereas both FMP [vascular adhesion molecule 1 (VCAM1), 1.3-fold, P = 0.0003] and YP (VCAM1, 1.04-fold, P = 0.013; intracellular adhesion molecule 1, 1.4-fold, P = 0.028) decreased circulating adhesion molecules. CONCLUSION: Both fermented dairy protein products reduce cardiometabolic risk factors in diet-induced obese mice, possibly by modulating the gut microbiota.


Subject(s)
Cardiovascular Diseases/prevention & control , Cultured Milk Products/analysis , Gastrointestinal Microbiome/drug effects , Metabolic Diseases/prevention & control , Milk Proteins/pharmacology , Obesity/chemically induced , Animals , Apolipoproteins B/genetics , Apolipoproteins B/metabolism , Bacteria/classification , Bacteria/drug effects , Biomarkers/blood , Diet , Diet, High-Fat , Dietary Sucrose/administration & dosage , Gene Expression Regulation/drug effects , Male , Mice , Mice, Knockout , Milk/chemistry , Milk Proteins/chemistry , Receptors, LDL/genetics , Receptors, LDL/metabolism
20.
EFSA J ; 16(10): e05431, 2018 Oct.
Article in English | MEDLINE | ID: mdl-32625713

ABSTRACT

A rapid qualitative assessment has been done by performing a theoretical analysis on the transmission of low pathogenic avian influenza (LPAI) via fresh meat from poultry reared or kept in captivity for the production of meat (raw poultry meat) or raw table eggs. A predetermined transmission pathway followed a number of steps from a commercial or non-commercial poultry establishment within the EU exposed to LPAI virus (LPAIV) to the onward virus transmission to animals and humans. The combined probability of exposure and subsequent LPAIV infection via raw poultry meat containing LPAIV is negligible for commercial poultry and humans exposed via consumption whereas it is very unlikely for non-commercial poultry, wild birds and humans exposed via handling and manipulation. The probability of LPAIV transmission from an individual infected via raw poultry meat containing LPAIV is negligible for commercial poultry and humans, whereas it is very unlikely for non-commercial poultry and wild birds. The combined probability of exposure and subsequent LPAIV infection via raw table eggs containing LPAIV is negligible for commercial poultry and humans and extremely unlikely to negligible for non-commercial poultry and wild birds. The probability of LPAIV transmission from an individual infected via raw table eggs containing LPAIV is negligible for commercial poultry and humans and very unlikely to negligible for non-commercial poultry and wild birds. Although the presence of LPAIV in raw poultry meat and table eggs is very unlikely to negligible, there is in general a high level of uncertainty on the estimation of the subsequent probabilities of key steps of the transmission pathways for poultry and wild birds, mainly due to the limited number of studies available, for instance on the viral load required to infect a bird via raw poultry meat or raw table eggs containing LPAIV.

SELECTION OF CITATIONS
SEARCH DETAIL
...