Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Respir Crit Care Med ; 209(9): 1152-1164, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38353578

ABSTRACT

Rationale: Chronic sarcoidosis is a complex granulomatous disease with limited treatment options that can progress over time. Understanding the molecular pathways contributing to disease would aid in new therapeutic development. Objectives: To understand whether macrophages from patients with nonresolving chronic sarcoidosis are predisposed to macrophage aggregation and granuloma formation and whether modulation of the underlying molecular pathways influence sarcoidosis granuloma formation. Methods: Macrophages were cultivated in vitro from isolated peripheral blood CD14+ monocytes and evaluated for spontaneous aggregation. Transcriptomics analyses and phenotypic and drug inhibitory experiments were performed on these monocyte-derived macrophages. Human skin biopsies from patients with sarcoidosis and a myeloid Tsc2-specific sarcoidosis mouse model were analyzed for validatory experiments. Measurements and Main Results: Monocyte-derived macrophages from patients with chronic sarcoidosis spontaneously formed extensive granulomas in vitro compared with healthy control participants. Transcriptomic analyses separated healthy and sarcoidosis macrophages and identified an enrichment in lipid metabolic processes. In vitro patient granulomas, sarcoidosis mouse model granulomas, and those directly analyzed from lesional patient skin expressed an aberrant lipid metabolism profile and contained increased neutral lipids. Conversely, a combination of statins and cholesterol-reducing agents reduced granuloma formation both in vitro and in vivo in a sarcoidosis mouse model. Conclusions: Together, our findings show that altered lipid metabolism in sarcoidosis macrophages is associated with its predisposition to granuloma formation and suggest cholesterol-reducing therapies as a treatment option in patients.


Subject(s)
Granuloma , Lipid Metabolism , Macrophages , Sarcoidosis , Humans , Animals , Mice , Macrophages/metabolism , Sarcoidosis/metabolism , Granuloma/metabolism , Female , Male , Middle Aged , Adult , Disease Models, Animal
2.
Cell Metab ; 35(11): 1931-1943.e8, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37804836

ABSTRACT

The intestinal epithelium has a high turnover rate and constantly renews itself through proliferation of intestinal crypt cells, which depends on insufficiently characterized signals from the microenvironment. Here, we showed that colonic macrophages were located directly adjacent to epithelial crypt cells in mice, where they metabolically supported epithelial cell proliferation in an mTORC1-dependent manner. Specifically, deletion of tuberous sclerosis complex 2 (Tsc2) in macrophages activated mTORC1 signaling that protected against colitis-induced intestinal damage and induced the synthesis of the polyamines spermidine and spermine. Epithelial cells ingested these polyamines and rewired their cellular metabolism to optimize proliferation and defense. Notably, spermine directly stimulated proliferation of colon epithelial cells and colon organoids. Genetic interference with polyamine production in macrophages altered global polyamine levels in the colon and modified epithelial cell proliferation. Our results suggest that macrophages act as "commensals" that provide metabolic support to promote efficient self-renewal of the colon epithelium.


Subject(s)
Polyamines , Spermine , Mice , Animals , Spermine/metabolism , Polyamines/metabolism , Colon , Intestinal Mucosa/metabolism , Homeostasis , Macrophages/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism
3.
Blood ; 141(23): 2878-2890, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37018657

ABSTRACT

Iron is an essential cellular metal that is important for many physiological functions including erythropoiesis and host defense. It is absorbed from the diet in the duodenum and loaded onto transferrin (Tf), the main iron transport protein. Inefficient dietary iron uptake promotes many diseases, but mechanisms regulating iron absorption remain poorly understood. By assessing mice that harbor a macrophage-specific deletion of the tuberous sclerosis complex 2 (Tsc2), a negative regulator of mechanistic target of rapamycin complex 1 (mTORC1), we found that these mice possessed various defects in iron metabolism, including defective steady-state erythropoiesis and a reduced saturation of Tf with iron. This iron deficiency phenotype was associated with an iron import block from the duodenal epithelial cells into the circulation. Activation of mTORC1 in villous duodenal CD68+ macrophages induced serine protease expression and promoted local degradation of Tf, whereas the depletion of macrophages in mice increased Tf levels. Inhibition of mTORC1 with everolimus or serine protease activity with nafamostat restored Tf levels and Tf saturation in the Tsc2-deficient mice. Physiologically, Tf levels were regulated in the duodenum during the prandial process and Citrobacter rodentium infection. These data suggest that duodenal macrophages determine iron transfer to the circulation by controlling Tf availability in the lamina propria villi.


Subject(s)
Iron, Dietary , Transferrin , Mice , Animals , Transferrin/metabolism , Iron, Dietary/metabolism , Iron/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Diet , Duodenum/metabolism , Receptors, Transferrin/metabolism
4.
Nature ; 471(7340): 602-7, 2011 Mar 31.
Article in English | MEDLINE | ID: mdl-21455174

ABSTRACT

CRISPR/Cas systems constitute a widespread class of immunity systems that protect bacteria and archaea against phages and plasmids, and commonly use repeat/spacer-derived short crRNAs to silence foreign nucleic acids in a sequence-specific manner. Although the maturation of crRNAs represents a key event in CRISPR activation, the responsible endoribonucleases (CasE, Cas6, Csy4) are missing in many CRISPR/Cas subtypes. Here, differential RNA sequencing of the human pathogen Streptococcus pyogenes uncovered tracrRNA, a trans-encoded small RNA with 24-nucleotide complementarity to the repeat regions of crRNA precursor transcripts. We show that tracrRNA directs the maturation of crRNAs by the activities of the widely conserved endogenous RNase III and the CRISPR-associated Csn1 protein; all these components are essential to protect S. pyogenes against prophage-derived DNA. Our study reveals a novel pathway of small guide RNA maturation and the first example of a host factor (RNase III) required for bacterial RNA-mediated immunity against invaders.


Subject(s)
RNA, Bacterial/genetics , RNA, Bacterial/metabolism , Ribonuclease III/metabolism , Streptococcus pyogenes/genetics , Streptococcus pyogenes/immunology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Conserved Sequence , DNA, Viral/genetics , DNA, Viral/metabolism , Escherichia coli , Models, Biological , Prophages/genetics , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , RNA, Bacterial/biosynthesis , RNA, Bacterial/immunology , Streptococcus pyogenes/metabolism , Streptococcus pyogenes/virology , RNA, Small Untranslated
SELECTION OF CITATIONS
SEARCH DETAIL
...