Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(23)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38069418

ABSTRACT

Because equine tendinopathies are slow to heal and often recur, therapeutic strategies are being considered that aid tendon repair. Given the success of utilizing vitamin C to promote tenogenesis in other species, we hypothesized that vitamin C supplementation would produce dose-dependent improvements in the tenogenic properties of tendon proper (TP) and peritenon (PERI) cells of the equine superficial digital flexor tendon (SDFT). Equine TP- and PERI-progenitor-cell-seeded fibrin three-dimensional constructs were supplemented with four concentrations of vitamin C. The gene expression profiles of the constructs were assessed with 3'-Tag-Seq and real-time quantitative polymerase chain reaction (RT-qPCR); collagen content and fibril ultrastructure were also analyzed. Moreover, cells were challenged with dexamethasone to determine the levels of cytoprotection afforded by vitamin C. Expression profiling demonstrated that vitamin C had an anti-inflammatory effect on TP and PERI cell constructs. Moreover, vitamin C supplementation mitigated the degenerative pathways seen in tendinopathy and increased collagen content in tendon constructs. When challenged with dexamethasone in two-dimensional culture, vitamin C had a cytoprotective effect for TP cells but not necessarily for PERI cells. Future studies will explore the effects of vitamin C on these cells during inflammation and within the tendon niche in vivo.


Subject(s)
Tendinopathy , Tendons , Animals , Horses , Tendons/metabolism , Collagen/metabolism , Tissue Engineering/methods , Tendinopathy/drug therapy , Tendinopathy/metabolism , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Dexamethasone/pharmacology , Dexamethasone/metabolism
2.
Adv Exp Med Biol ; 1348: 5-43, 2021.
Article in English | MEDLINE | ID: mdl-34807414

ABSTRACT

The physiology of connective tissues like tendons and ligaments is highly dependent upon the collagens and other such extracellular matrix molecules hierarchically organized within the tissues. By dry weight, connective tissues are mostly composed of fibrillar collagens. However, several other forms of collagens play essential roles in the regulation of fibrillar collagen organization and assembly, in the establishment of basement membrane networks that provide support for vasculature for connective tissues, and in the formation of extensive filamentous networks that allow for cell-extracellular matrix interactions as well as maintain connective tissue integrity. The structures and functions of these collagens are discussed in this chapter. Furthermore, collagen synthesis is a multi-step process that includes gene transcription, translation, post-translational modifications within the cell, triple helix formation, extracellular secretion, extracellular modifications, and then fibril assembly, fibril modifications, and fiber formation. Each step of collagen synthesis and fibril assembly is highly dependent upon the biochemical structure of the collagen molecules created and how they are modified in the cases of development and maturation. Likewise, when the biochemical structures of collagens or are compromised or these molecules are deficient in the tissues - in developmental diseases, degenerative conditions, or injuries - then the ultimate form and function of the connective tissues are impaired. In this chapter, we also review how biochemistry plays a role in each of the processes involved in collagen synthesis and assembly, and we describe differences seen by anatomical location and region within tendons. Moreover, we discuss how the structures of the molecules, fibrils, and fibers contribute to connective tissue physiology in health, and in pathology with injury and repair.


Subject(s)
Collagen , Extracellular Matrix , Connective Tissue , Fibrillar Collagens , Tendons
SELECTION OF CITATIONS
SEARCH DETAIL
...