Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Drug Deliv Rev ; 196: 114777, 2023 05.
Article in English | MEDLINE | ID: mdl-36931346

ABSTRACT

Brain cancer remains the deadliest cancer. The blood-brain barrier (BBB) is impenetrable to most drugs and is a complex 3D network of multiple cell types including endothelial cells, astrocytes, and pericytes. In brain cancers, the BBB becomes disrupted during tumor progression and forms the blood-brain tumor barrier (BBTB). To advance therapeutic development, there is a critical need for physiologically relevant BBB in vitro models. 3D cell systems are emerging as valuable preclinical models to accelerate discoveries for diseases. Given the versatility and capability of 3D cell models, their potential for modelling the BBB and BBTB is reviewed. Technological advances of BBB models and challenges of in vitro modelling the BBTB, and application of these models as tools for assessing therapeutics and nano drug delivery, are discussed. Quantitative, in vitro BBB models that are predictive of effective brain cancer therapies will be invaluable for accelerating advancing new treatments to the clinic.


Subject(s)
Blood-Brain Barrier , Brain Neoplasms , Humans , Blood-Brain Barrier/metabolism , Endothelial Cells , Brain Neoplasms/pathology , Brain/pathology , Organoids/pathology
2.
Cancer Med ; 12(4): 4455-4471, 2023 02.
Article in English | MEDLINE | ID: mdl-35946957

ABSTRACT

Non-Small Cell Lung Carcinoma (NSCLC) remains a leading cause of cancer death. Resistance to therapy is a significant problem, highlighting the need to find new ways of sensitising tumour cells to therapeutic agents. ßIII-tubulin is associated with aggressive tumours and chemotherapy resistance in a range of cancers including NSCLC. ßIII-tubulin expression has been shown to impact kinase signalling in NSCLC cells. Here, we sought to exploit this interaction by identifying co-activity between ßIII-tubulin suppression and small-molecule kinase inhibitors. To achieve this, a forced-genetics approach combined with a high-throughput drug screen was used. We show that activity of the multi-kinase inhibitor Amuvatinib (MP-470) is enhanced by ßIII-tubulin suppression in independent NSCLC cell lines. We also show that this compound significantly inhibits cell proliferation among ßIII-tubulin knockdown cells expressing the receptor tyrosine kinase c-Met. Together, our results highlight that ßIII-tubulin suppression combined with targeting specific receptor tyrosine kinases may represent a novel therapeutic approach for otherwise difficult-to-treat lung carcinomas.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Tubulin/genetics , Tubulin/metabolism , Cell Proliferation , Drug Resistance, Neoplasm , Cell Line, Tumor
3.
Cancer Res ; 81(13): 3461-3479, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33980655

ABSTRACT

Cancer-associated fibroblasts (CAF) are major contributors to pancreatic ductal adenocarcinoma (PDAC) progression through protumor signaling and the generation of fibrosis, the latter of which creates a physical barrier to drugs. CAF inhibition is thus an ideal component of any therapeutic approach for PDAC. SLC7A11 is a cystine transporter that has been identified as a potential therapeutic target in PDAC cells. However, no prior study has evaluated the role of SLC7A11 in PDAC tumor stroma and its prognostic significance. Here we show that high expression of SLC7A11 in human PDAC tumor stroma, but not tumor cells, is independently prognostic of poorer overall survival. Orthogonal approaches showed that PDAC-derived CAFs are highly dependent on SLC7A11 for cystine uptake and glutathione synthesis and that SLC7A11 inhibition significantly decreases CAF proliferation, reduces their resistance to oxidative stress, and inhibits their ability to remodel collagen and support PDAC cell growth. Importantly, specific ablation of SLC7A11 from the tumor compartment of transgenic mouse PDAC tumors did not affect tumor growth, suggesting the stroma can substantially influence PDAC tumor response to SLC7A11 inhibition. In a mouse orthotopic PDAC model utilizing human PDAC cells and CAFs, stable knockdown of SLC7A11 was required in both cell types to reduce tumor growth, metastatic spread, and intratumoral fibrosis, demonstrating the importance of targeting SLC7A11 in both compartments. Finally, treatment with a nanoparticle gene-silencing drug against SLC7A11, developed by our laboratory, reduced PDAC tumor growth, incidence of metastases, CAF activation, and fibrosis in orthotopic PDAC tumors. Overall, these findings identify an important role of SLC7A11 in PDAC-derived CAFs in supporting tumor growth. SIGNIFICANCE: This study demonstrates that SLC7A11 in PDAC stromal cells is important for the tumor-promoting activity of CAFs and validates a clinically translatable nanomedicine for therapeutic SLC7A11 inhibition in PDAC.


Subject(s)
Amino Acid Transport System y+/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , Cancer-Associated Fibroblasts/drug effects , Carcinoma, Pancreatic Ductal/prevention & control , Gene Expression Regulation, Neoplastic/drug effects , Pancreatic Neoplasms/prevention & control , Tumor Microenvironment , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/immunology , Animals , Apoptosis , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Proliferation , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Pancreatic Neoplasms
4.
Sci Rep ; 11(1): 1944, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479301

ABSTRACT

The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is attributed to the highly fibrotic stroma and complex multi-cellular microenvironment that is difficult to fully recapitulate in pre-clinical models. To fast-track translation of therapies and to inform personalised medicine, we aimed to develop a whole-tissue ex vivo explant model that maintains viability, 3D multicellular architecture, and microenvironmental cues of human pancreatic tumours. Patient-derived surgically-resected PDAC tissue was cut into 1-2 mm explants and cultured on gelatin sponges for 12 days. Immunohistochemistry revealed that human PDAC explants were viable for 12 days and maintained their original tumour, stromal and extracellular matrix architecture. As proof-of-principle, human PDAC explants were treated with Abraxane and we observed different levels of response between patients. PDAC explants were also transfected with polymeric nanoparticles + Cy5-siRNA and we observed abundant cytoplasmic distribution of Cy5-siRNA throughout the PDAC explants. Overall, our novel model retains the 3D architecture of human PDAC and has advantages over standard organoids: presence of functional multi-cellular stroma and fibrosis, and no tissue manipulation, digestion, or artificial propagation of organoids. This provides unprecedented opportunity to study PDAC biology including tumour-stromal interactions and rapidly assess therapeutic response to drive personalised treatment.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Cell Culture Techniques , Organoids/pathology , Adenocarcinoma/pathology , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Extracellular Matrix/pathology , Extracellular Matrix/ultrastructure , Humans , Organoids/ultrastructure , Pancreas/pathology , Pancreas/ultrastructure , Tumor Microenvironment/genetics
5.
Biomaterials ; 240: 119742, 2020 05.
Article in English | MEDLINE | ID: mdl-32088410

ABSTRACT

Pancreatic cancer is predicted to be the second leading cause of cancer-related death by 2025. The best chemotherapy only extends survival by an average of 18 weeks. The extensive fibrotic stroma surrounding the tumor curbs therapeutic options as chemotherapy drugs cannot freely penetrate the tumor. RNA interference (RNAi) has emerged as a promising approach to revolutionize cancer treatment. Small interfering RNA (siRNA) can be designed to inhibit the expression of any gene which is important given the high degree of genetic heterogeneity present in pancreatic tumors. Despite the potential of siRNA therapies, there are hurdles limiting their clinical application such as poor transport across biological barriers, limited cellular uptake, degradation, and rapid clearance. Nanotechnology can address these challenges. In fact, the past few decades have seen the conceptualization, design, pre-clinical testing and recent clinical approval of a RNAi nanodrug to treat disease. In this review, we comment on the current state of play of clinical trials evaluating siRNA nanodrugs and review pre-clinical studies investigating the efficacy of siRNA therapeutics in pancreatic cancer. We assess the physiological barriers unique to pancreatic cancer that need to be considered when designing and testing new nanomedicines for this disease.


Subject(s)
Nanoparticles , Pancreatic Neoplasms , Pharmaceutical Preparations , Gene Silencing , Humans , Nanomedicine , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , RNA Interference , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...