Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Clin Invest ; 133(14)2023 07 17.
Article in English | MEDLINE | ID: mdl-37463454

ABSTRACT

Mutations in HNRNPH2 cause an X-linked neurodevelopmental disorder with features that include developmental delay, motor function deficits, and seizures. More than 90% of patients with hnRNPH2 have a missense mutation within or adjacent to the nuclear localization signal (NLS) of hnRNPH2. Here, we report that hnRNPH2 NLS mutations caused reduced interaction with the nuclear transport receptor Kapß2 and resulted in modest cytoplasmic accumulation of hnRNPH2. We generated 2 knockin mouse models with human-equivalent mutations in Hnrnph2 as well as Hnrnph2-KO mice. Knockin mice recapitulated clinical features of the human disorder, including reduced survival in male mice, impaired motor and cognitive functions, and increased susceptibility to audiogenic seizures. In contrast, 2 independent lines of Hnrnph2-KO mice showed no detectable phenotypes. Notably, KO mice had upregulated expression of Hnrnph1, a paralog of Hnrnph2, whereas knockin mice failed to upregulate Hnrnph1. Thus, genetic compensation by Hnrnph1 may counteract the loss of hnRNPH2. These findings suggest that HNRNPH2-related disorder may be driven by a toxic gain of function or a complex loss of HNRNPH2 function with impaired compensation by HNRNPH1. The knockin mice described here are an important resource for preclinical studies to assess the therapeutic benefit of gene replacement or knockdown of mutant hnRNPH2.


Subject(s)
Neurodevelopmental Disorders , Animals , Humans , Male , Mice , Disease Models, Animal , Mutation , Mutation, Missense , Seizures/genetics
3.
Structure ; 31(8): 924-934.e4, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37279758

ABSTRACT

The HNRNPH2 proline-tyrosine nuclear localization signal (PY-NLS) is mutated in HNRNPH2-related X-linked neurodevelopmental disorder, causing the normally nuclear HNRNPH2 to accumulate in the cytoplasm. We solved the cryoelectron microscopy (cryo-EM) structure of Karyopherin-ß2/Transportin-1 bound to the HNRNPH2 PY-NLS to understand importin-NLS recognition and disruption in disease. HNRNPH2 206RPGPY210 is a typical R-X2-4-P-Y motif comprising PY-NLS epitopes 2 and 3, followed by an additional Karyopherin-ß2-binding epitope, we term epitope 4, at residues 211DRP213; no density is present for PY-NLS epitope 1. Disease variant mutations at epitopes 2-4 impair Karyopherin-ß2 binding and cause aberrant cytoplasmic accumulation in cells, emphasizing the role of nuclear import defect in disease. Sequence/structure analysis suggests that strong PY-NLS epitopes 4 are rare and thus far limited to close paralogs of HNRNPH2, HNRNPH1, and HNRNPF. Epitope 4-binidng hotspot Karyopherin-ß2 W373 corresponds to close paralog Karyopherin-ß2b/Transportin-2 W370, a pathological variant site in neurodevelopmental abnormalities, suggesting that Karyopherin-ß2b/Transportin-2-HNRNPH2/H1/F interactions may be compromised in the abnormalities.


Subject(s)
Karyopherins , Nuclear Localization Signals , Karyopherins/metabolism , Nuclear Localization Signals/metabolism , Epitopes/metabolism , Tyrosine/metabolism , Proline , Cryoelectron Microscopy , Active Transport, Cell Nucleus , beta Karyopherins/genetics , beta Karyopherins/chemistry , beta Karyopherins/metabolism , Cell Nucleus/metabolism
4.
bioRxiv ; 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36711837

ABSTRACT

The normally nuclear HNRNPH2 is mutated in HNRNPH2 -related X-linked neurodevelopmental disorder causing the protein to accumulate in the cytoplasm. Interactions of HNRNPH2 with its importin Karyopherin-ß2 (Transportin-1) had not been studied. We present a structure that shows Karyopherin-ß2 binding HNRNPH2 residues 204-215, a proline-tyrosine nuclear localization signal or PY-NLS that contains a typical R-X 2-4 -P-Y motif, 206 RPGPY 210 , followed a new Karyopherin-ß2 binding epitope at 211 DRP 213 that make many interactions with Karyopherin-ß2 W373. Mutations at each of these sites decrease Karyopherin-ß2 binding affinities by 70-100 fold, explaining aberrant accumulation in cells and emphasizing the role of nuclear import defects in the disease. Sequence/structure analysis suggests that the new epitope C-terminal of the PY-motif, which binds Karyopherin-ß2 W373, is rare and thus far limited to close paralogs HNRNPH2, HNRNPH1 and HNRNPF. Karyopherin-ß2 W373, a HNRNPH2-binding hotspot, corresponds to W370 of close paralog Transportin-2, a site of pathological variants in patients with neurodevelopmental abnormalities, suggesting that Transportin-2-HNRNPH2/H1/F interactions may be compromised in the abnormalities. Summary: HNRNPH2 variants in HNRNPH2 -related X-linked neurodevelopmental disorder aberrantly accumulate in the cytoplasm. A structure of Karyopherin-ß2•HNRNPH2 explains nuclear import defects of the variants, reveals a new NLS epitope that suggests mechanistic changes in pathological variants of Karyopherin-ß2 paralog Transportin-2.

5.
Sci Rep ; 11(1): 3754, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33580145

ABSTRACT

Mutations in the RNA-binding protein FUS cause familial amyotropic lateral sclerosis (ALS). Several mutations that affect the proline-tyrosine nuclear localization signal (PY-NLS) of FUS cause severe juvenile ALS. FUS also undergoes liquid-liquid phase separation (LLPS) to accumulate in stress granules when cells are stressed. In unstressed cells, wild type FUS resides predominantly in the nucleus as it is imported by the importin Karyopherin-ß2 (Kapß2), which binds with high affinity to the C-terminal PY-NLS of FUS. Here, we analyze the interactions between two ALS-related variants FUS(P525L) and FUS(R495X) with importins, especially Kapß2, since they are still partially localized to the nucleus despite their defective/missing PY-NLSs. The crystal structure of the Kapß2·FUS(P525L)PY-NLS complex shows the mutant peptide making fewer contacts at the mutation site, explaining decreased affinity for Kapß2. Biochemical analysis revealed that the truncated FUS(R495X) protein, although missing the PY-NLS, can still bind Kapß2 and suppresses LLPS. FUS(R495X) uses its C-terminal tandem arginine-glycine-glycine regions, RGG2 and RGG3, to bind the PY-NLS binding site of Kapß2 for nuclear localization in cells when arginine methylation is inhibited. These findings suggest the importance of the C-terminal RGG regions in nuclear import and LLPS regulation of ALS variants of FUS that carry defective PY-NLSs.


Subject(s)
RNA-Binding Protein FUS/metabolism , beta Karyopherins/metabolism , Active Transport, Cell Nucleus , Amyotrophic Lateral Sclerosis/genetics , Binding Sites , Cell Nucleus/metabolism , Humans , Karyopherins/genetics , Karyopherins/metabolism , Nuclear Localization Signals/genetics , Protein Binding , RNA-Binding Protein FUS/genetics , RNA-Binding Protein FUS/ultrastructure , beta Karyopherins/genetics , beta Karyopherins/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...