Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(6)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33806894

ABSTRACT

Oral squamous cell carcinoma (OSCC) develops through the multistep malignant progression of squamous epithelium. This process can be prevented by PD-1 blockade in a mouse model for oral carcinogenesis. OSCCs exhibit a high incidence of p53 mutations that confer oncogenic gain-of-function (GOF) activities that promote resistance to standard therapies and poor clinical outcomes. To determine whether epithelial p53 mutations modulate anti-PD-1-mediated oral cancer immunoprevention, we generated mouse models for oral carcinogenesis by exposing mice carrying epithelial-specific p53 mutations to the carcinogen 4NQO. Consistent with the oncogenic functions of mutant p53, mice with OSCCs expressing the p53R172H GOF mutation developed higher metastasis rates than mice with loss-of-function (LOF) p53 deletion or with wild-type p53. Throughout oral cancer progression, pre-invasive and invasive lesions showed a gradual increase in T-cell infiltration, recruitment of immunosuppressive regulatory T-cells (Tregs), and induction of PD-1/PD-L1 immune checkpoint proteins. Notably, while PD-1 blockade prevented the development of OSCCs in mice with wild-type p53 or p53 deletion, GOF p53R172H abrogated the immunopreventive effects of anti-PD-1, associated with upregulation of IL17 signaling and depletion of exhausted CD8 cells in the microenvironment of the p53R172H tumors. These findings sustain a potential role for p53 profiling in personalized oral cancer immunoprevention.

2.
J Pathol ; 240(2): 224-34, 2016 10.
Article in English | MEDLINE | ID: mdl-27447534

ABSTRACT

p53 (TP53) is the most frequently mutated gene in squamous cell carcinomas (SCCs) of the skin and head and neck. Certain p53 mutations are oncogenic and promote invasion and metastasis in SCCs. However, it is unclear how the oncogenic function of mutant p53 is modulated by other molecular alterations that co-exist in SCCs. Here, we show that deletion of the p53 gene and activation of an endogenous p53(R172H) gain-of-function mutation in the skin induce carcinomas with similar kinetics and penetrance. Deletion of p53 induced primarily well-differentiated SCCs. However, most of the tumours induced by p53(R172H) were poorly differentiated SCCs, the only metastatic tumours in this model. These tumours expressed higher levels of cyclin D1 than the well-differentiated SCCs and spindle carcinomas that developed in these mice. Unexpectedly, metastasis was not observed in mice that developed spindle carcinomas, which expressed high levels of the tumour suppressors p16(Ink4a) and p19(Arf) , encoded by Cdkn2a, a gene frequently deleted in human SCCs. Remarkably, deletion of the Cdkn2a gene in p53(R172H) -induced SCCs promoted a dramatic increase in metastasis rates and a shorter survival in mice that developed these tumours, compared with those observed in mice with tumours in which Cdkn2a was deleted in the presence of a p53 loss-of-function mutation or wild-type p53. Accordingly, the survival of patients with head and neck SCCs bearing co-occurring high-risk p53 mutations and CDKN2A homozygous deletions was much shorter than that of patients with tumours in which high-risk p53 mutations did not contain CDKN2A homozygous deletions, or that of patients with tumours in which homozygous CDKN2A deletions co-existed with either low-risk p53 mutations or potential loss-of-function mutations in p53. These findings genetically identify a population of SCC patients with worst outcomes and will help to predict outcomes according to the p53 status and alterations in CDKN2A. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Carcinoma, Squamous Cell/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Mutation , Neoplasm Metastasis/genetics , Tumor Suppressor Protein p53/genetics , Animals , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/mortality , Carcinoma, Squamous Cell/pathology , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Databases, Genetic , Gene Deletion , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/pathology , Humans , Mice , Neoplasm Metastasis/pathology , Survival Rate , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...