Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Publication year range
1.
Heliyon ; 8(3): e09130, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35846478

ABSTRACT

A pot experiment was conducted to determine the influence of commercial nanoparticles (ZnO-NPs) at different doses for use as nanofertilizer on nutrient uptake and its distribution in cherry tomato (Solanum lycopersicum L var. cerasiforme) plants in an acidic (soil pH 5.5) and calcareous soil (soil pH 8.5) from the Mediterranean area. We determined crop yield; macro- (N, P, K, Mg, S and Ca) and micro-nutrient (B, Cu, Fe, Mn, Na and Zn) concentrations in the different parts of the crop (root, stem, leaves and tomato fruits) and the extent of nutrient translocation to the aerial part of the plant. The concentrations of macronutrients N, P, K and Mg in tomato fruits grown in both soils can be considered adequate in terms of nutritional requirements. However, the Ca concentration in tomato fruits grown in the calcareous soil did not reach the required concentration to be considered sufficient. This effect was related to the characteristics of this calcareous soil. Although different concentrations of ZnO-NPs did not affect Fe and Na concentrations in tomato fruit, B concentration in tomato fruits increased with the application of ZnO-NPs. In addition, Cu concentration decreased with the application of ZnO-NPs compared to treatments without any Zn application (Nil-ZnO NP) in the calcareous soil. Manganese concentrations decreased with ZnO-NPs application in both soils. The effect of the application of ZnO-NPs depends on soil characteristics. Zinc applied as a nanofertilizer in the form of ZnO-NPs can be used to increase the crop yield and to obtain an adequate Zn biofortification in cherry tomato crop. The Zn concentrations in tomato fruits reached ranges of 4.5-4.8 mg Zn kg-1 in the acidic soil and 2.5-3,5 mg Zn kg-1 in the calcareous soil. Nutrient concentrations in these fruits following biofortification are adequate for human consumption.

2.
Sci Total Environ ; 706: 135713, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31791765

ABSTRACT

This study evaluated the influence of ageing of ZnO nanoparticles (NPs) applied to soil on the potential availability and chemical speciation of Zn, and also of their toxicity to aquatic organisms due to transfer of contaminants from soil to water. To this end, soil samples were spiked with two types of bare nanoparticles: b1ZnO NPs (rod- and elongated-shaped) and b2ZnO NPs (near-spherical shaped) and ZnO NPs coated with (3-aminopropyl)triethoxysilane (cZnO NPs) within the 0-800 mg Zn kg-1 soil dose range, and were left to age for 0, 30, 60 and 90 days. The available concentration and speciation of Zn in soil were determined by the DGT (diffusive gradients in thin films) technique and sequential extraction procedures, respectively. The toxicity of the aqueous extracts from the ZnO NP-treated soils was assessed in vitro in established fish cell lines (RTG-2). The highest distribution percentages of the applied Zn occurred in the organically complexed (OC), followed by the exchangeable (EXC) fraction, for all NP types, applied doses and incubation times. The toxicity of NPs depended on their intrinsic properties: b1ZnO NPs affected the membrane function, reductase enzyme activity and, to a lesser extent, reactive oxygen species (ROS) levels of fish cells, whereas b2ZnO NPs and cZnO NPs affected mainly ROS generation. Ageing increased Zn soil availability, but toxicity to fish cells showed no trend over time. The particle dissolution of ZnO NPs did not explain the observed toxicity, hence a nanoparticles-specific effect should be assumed. The findings of this study seem to indicate that the transfer of ZnO NP from contaminated soils to aquatic ecosystems should be addressed.


Subject(s)
Nanoparticles , Soil Pollutants , Zinc Oxide , Animals , Ecosystem , Fishes , Soil , Zinc
3.
J Sci Food Agric ; 99(9): 4445-4451, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30866046

ABSTRACT

BACKGROUND: Intensive cropping systems have caused widespread Zn deficiency, low nutritional quality of cereals and environmental problems. The aim of the microplot field experiment reported in this paper was to assess the option of using Zn in conjunction with urea fertilization in order to reduce N rate and to maintain the yield level and grain quality but minimizing environmental risks. Barley (Hordeum vulgare L.) was cultivated in a calcareous soil under semi-realistic conditions. Combinations of four Zn levels, applied by spraying aqueous solutions of ZnSO4 , and three N levels, applied by spreading granular urea, were tested. RESULTS: Zn and N showed a synergistic effect, increasing yield and Zn content in all plant parts and protein content in grain. A low Zn dosage of 5 kg ha-1 was sufficient to significantly increase the amount of bioavailable Zn in soil and significantly raise its concentration in plant material and also the protein content in grain. The remobilization of Zn from leaf tissue to grain was dependent on the availability of Zn and was only crucial when its bioavailability was low. CONCLUSIONS: A Zn dosage of 5 kg ha-1 enhanced the agronomic efficiency of N by 15.5 kg grain kg-1 N. The Zn applied to the soil permitted a reduction in the rate of N with only a small decrease in barley grain yield and nutritional value. However, due to the interannual variability in rainfall, which is characteristic of Mediterranean climates, further studies will be necessary to confirm and extend these results. © 2019 Society of Chemical Industry.


Subject(s)
Hordeum/metabolism , Nitrogen/metabolism , Urea/metabolism , Zinc/metabolism , Biofortification , Fertilizers/analysis , Hordeum/chemistry , Zinc/analysis
4.
Sci Total Environ ; 644: 770-780, 2018 Dec 10.
Article in English | MEDLINE | ID: mdl-29990925

ABSTRACT

The increasing use of zinc oxide nanoparticles (ZnO NPs) in agriculture and consumer products has created the need to evaluate their impact on crops. Nine crops were investigated: wheat, maize, radish, bean, lettuce, tomato, pea, cucumber, and beet. The toxic effects of ZnO NPs on seed germination, plant growth, and biochemical parameters, including photosynthetic pigments, protein and malondialdehyde (MDA) content, reactive oxygen species (ROS), enzymes of the antioxidant defence system, as well as the Zn translocation in the plants were investigated using pots containing non-contaminated or ZnO NP-contaminated soil at concentrations of 20, 225, 450, and 900 mg Zn kg-1. Two soils with different physicochemical properties, namely a calcareous soil and an acidic soil, were used. The total and available Zn in the soils were correlated with the Zn in the plants (roots and shoots) and the observed effects. In the calcareous soil, the available Zn was very low and the phytotoxicity was limited to a slight reduction in the biomass for wheat, cucumber, and beet at the highest concentration. Only beet showed an increase in photosynthetic pigments. The parameters related to oxidative stress were affected to different degrees depending on the crop, with the exceptions of maize, lettuce, pea, and beet. In the acidic soil, the available Zn was high, and the germination of bean, tomato, lettuce, and beet, and the growth of most of the crops were seriously affected. The calculated EC50 values (growth) in the acidic soil ranged from 110 to 520 mg Zn kg-1. The photosynthetic pigments and most of the markers of oxidative stress were negatively affected in maize, wheat, bean, and pea. However, these changes were not always associated with a decrease in plant weight. In summary, soil pH and plant species are key factors affecting the Zn availability and phytotoxicity of ZnO NPs.

5.
Ecotoxicol Environ Saf ; 160: 222-230, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-29807295

ABSTRACT

Most studies have assessed the toxicity of pristine NPs to plants without considering the likely changes that these NPs will undergo during their residence time in the soil. In this study, we assessed the effects of ZnO NPs (3, 20, and 225 mg Zn kg-1 soil) aged for a year in soil and after a previous crop on the Zn availability in soil, leaf accumulation and toxicity to green pea (Pisum sativum L.) and beet root (Beta vulgaris L). The effects were compared to bulk ZnO and ZnSO4 in two agricultural soils with different pH under greenhouse conditions. The Zn concentration in the plant leaf was 6-12-fold higher in acidic than in calcareous soil that could explain the different effects on plants caused by Zn applications depending on soil type. Thus, in acidic soil, ZnO NPs promoted ROS generation in both plant species with increases from 47% to 130%, increased the MDA content in pea up to 58 ±â€¯8% in plant exposed to ZnSO4 at 225 mg Zn kg-1 soil and altered the ratio of photosynthetic pigments in beet between 12% and 41%, suggesting distressed chloroplast constituents. In calcareous soil, the changes seemed to be related to the supply of Zn in Zn deficient soils, whose principal effect was the 20-65% decrease of ROS levels in treated plants. The available and leaf Zn concentrations did not differ among Zn sources. Likewise, ZnO NPs showed comparable toxic or stimulatory effects to ZnO bulk and Zn salt, with some exceptions where Zn ion showed the highest phytotoxicity and effectiveness as a micronutrient. According to our results, we cannot affirm that NPs pose a higher potential environmental risk than their bulk counterparts after one-year of residence time in soil.


Subject(s)
Beta vulgaris/drug effects , Nanoparticles/toxicity , Pisum sativum/drug effects , Soil Pollutants/toxicity , Zinc Oxide/toxicity , Beta vulgaris/metabolism , Malondialdehyde/metabolism , Pisum sativum/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Reactive Oxygen Species/metabolism , Zinc/metabolism
6.
Sci Total Environ ; 589: 11-24, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28264770

ABSTRACT

The present study has investigated the toxicity of ZnO NPs to bean (Phaseolus vulgaris) and tomato (Solanum lycopersicon) crops grown to maturity under greenhouse conditions using an acidic (soil pH5.4) and a calcareous soil (soil pH8.3). The potentially available Zn in the soils and the Zn accumulation in the leaves from NPs applied to the soil (3, 20 and 225mgZnkg-1) and changes in the chlorophylls, carotenoids and oxidative stress biomarkers were measured at 15, 30, 60 and 90days and compared with those caused by bulk ZnO and ZnSO4. The available Zn in the soil and the leaf Zn content did not differ among the Zn chemical species, except in the acidic soil at the highest concentration of Zn applied as Zn ions, where the highest values of the two variables were found. The ZnO NPs showed comparable Zn toxicity or biostimulation to their bulk counterparts and Zn salts, irrespective of certain significant differences suggesting a higher activity of the Zn ion. The treatments altered the photosynthetic pigment concentration and induced oxidative stress in plants. ROS formation was observed at Zn plant concentrations ranging from 590 to 760mgkg-1, but the effects on the rest of the parameters were highly dependent on the plant species, exposure time and especially soil type. In general, the effects were higher in the acidic soil than in the calcareous soil for the bean and the opposite for the tomato. The similar uptakes and toxicities of the different Zn forms suggest that the Zn ions derived from the ZnO NPs exerted a preferential toxicity in plants. However, several results obtained in soils treated with NPs at 3mgZnkg-1 soil indicated that may exist other underlying mechanisms related to the intrinsic nanoparticle properties, especially at low NP concentrations.

7.
J Agric Food Chem ; 61(20): 4692-701, 2013 May 22.
Article in English | MEDLINE | ID: mdl-23638953

ABSTRACT

To ensure an optimal concentration of Cu in food crops, the effectiveness of eight liquid Cu fertilizers was studied in a spinach ( Spinacia oleracea L.) crop grown on Cu-deficient soil under greenhouse conditions. Plant dry matter yields, Cu concentrations in spinach plants (total and morpholino acid (MES)- and ethylenediaminedisuccinic acid (EDDS)-extractable), and Cu uptakes were studied. The behavior of Cu in soil was evaluated by both single and sequential extraction procedures. The highest quantities of Cu in labile forms in the soil, total uptakes, and Cu concentrations in the plants were associated with the application of the two sources that contained Cu chelated by EDTA and/or DTPA. The fertilizers containing these Cu chelates represent a promising approach to achieve high levels of agronomic biofortification. The stronger correlations obtained between low-molecular-weight organic acid-extractable Cu in soil and the Cu concentrations and Cu uptakes by the plants show the suitability of this soil extraction method for predicting Cu available to spinach plants.


Subject(s)
Copper/administration & dosage , Fertilizers , Soil/chemistry , Spinacia oleracea/metabolism , Copper/analysis , Copper/metabolism , Edetic Acid/administration & dosage , Pentetic Acid , Plant Leaves/chemistry , Spinacia oleracea/chemistry , Spinacia oleracea/growth & development
8.
J Agric Food Chem ; 54(25): 9488-95, 2006 Dec 13.
Article in English | MEDLINE | ID: mdl-17147437

ABSTRACT

The effect of six Zn sources (Zn-phenolate, Zn-EDDHA, Zn-EDTA, Zn-lignosulfonate, Zn-polyflavonoid, and Zn-glucoheptonate) was studied by applying different Zn levels to a representative Calcic Haploxeralf neutral soil (the predominant clay is montmorillonite) in incubation and greenhouse experiments. Zinc soil behavior was evaluated by sequential DTPA and Mehlich-3 extraction procedures. In the incubation experiment, the highest percentage recovery values of Zn applied to soil occurred in the water-soluble plus exchangeable fraction (29%) in fertilization with 20 mg of Zn kg(-1) of Zn-EDTA fertilizer. In the greenhouse experiment with maize (Zea mays L.), a comparison of different Zn carriers showed that the application of six fertilizers did not significantly increase the plant dry matter yield among fertilizer treatments. The highest yield occurred when 20 mg of Zn kg(-1) was applied as Zn-EDDHA fertilizer (79.4 g per pot). The relative effectiveness of the Zn sources in increasing Zn concentration in plants was in the following order: Zn-EDTA (20 mg kg(-1)) > Zn-EDDHA (20 mg kg(-1)) approximately Zn-EDTA (10 mg kg(-1)) > Zn-EDDHA (10 mg kg(-1)) approximately Zn-phenolate (both rates) approximately Zn-polyflavonoid (both rates) approximately Zn-lignosulfonate (both rates) approximately Zn-glucoheptonate (both rates) > untreated Zn. The highest amounts of Zn taken up by the plants occurred when Zn was applied as Zn-EDTA fertilizer (20 mg kg(-1), 7.44 mg of Zn per pot; 10 mg kg(-1) Zn rate, 3.93 mg of Zn per pot) and when Zn was applied as Zn-EDDHA fertilizer (20 mg kg(-1) Zn rate, 4.66 mg Zn per pot). After the maize crop was harvested, sufficient quantities of available Zn remained in the soil (DTPA- or Mehlich-3-extractable Zn) for another harvest.


Subject(s)
Fertilizers/analysis , Soil/analysis , Zea mays/growth & development , Zinc/analysis , Zinc/metabolism , Zea mays/metabolism , Zinc/administration & dosage , Zinc Compounds/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...