Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(37): e2221405120, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37669386

ABSTRACT

DNA methylation functions as a repressive epigenetic mark that can be reversed by the Ten-eleven translocation (TET) family of DNA dioxygenases that sequentially oxidize 5-methylcytosine into 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be excised by DNA base-excision repair factors leading to unmodified cytosines. TET enzymes were recently implicated as potential risk factors for inflammatory bowel disease (IBD), but the contribution of TET-mediated DNA oxidation to intestinal homeostasis and response to environmental stressors are unknown. Here, we show prominent roles of TET3 in regulating mouse intestinal epithelial differentiation and response to luminal stressors. Compared with wild-type littermates, mice with intestinal epithelial cell-specific ablation of Tet3 (Tet3ΔIEC) demonstrated a decreased transcriptome involved in innate immune response, Paneth cell differentiation, and epithelial regeneration. Tet3IEC mice exhibited an elevated susceptibility to enteric pathogen infection that is correlated with a decreased epithelial 5hmC abundance. Infection of human enterocytes or mice with the pathogenic bacteria acutely increased 5hmC abundance. Genome-wide 5hmC profiling revealed a shift of genomic enrichment of 5hmC toward genes involved in activating Notch, Wnt, and autophagy pathways. Furthermore, chemical stressor dextran sulfate sodium (DSS) represses epithelial 5hmC abundance in a temporal fashion, and Tet3IEC mice exhibited increased susceptibility to DSS experimental colitis with reduced regenerative capacity. TET3 is a critical regulator of gut epithelial DNA methylome and transcriptome, especially in response to luminal stressors, for the maintenance of tissue homeostasis.


Subject(s)
Colitis , Dioxygenases , Animals , Humans , Mice , DNA , Enterocytes , Oxidation-Reduction , Paneth Cells
2.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 04.
Article in English | MEDLINE | ID: mdl-34358067

ABSTRACT

Myelodysplastic Syndromes (MDSs) affect the elderly and can progress to Acute Myeloid Leukemia (AML). Epigenetic alterations including DNA methylation and chromatin modification may contribute to the initiation and progression of these malignancies. DNA hypomethylating agents such as decitabine and azacitidine are used as therapeutic treatments and have shown to promote expression of genes involved in tumor suppression, apoptosis, and immune response. Another anti-cancer drug, the proteasome inhibitor bortezomib, is used as a chemotherapeutic treatment for multiple myeloma (MM). Phase III clinical trials of decitabine and azacitidine used alone and in combination with other chemotherapeutics demonstrated their capacity to treat hematological malignancies and prolong the survival of MDS and AML patients. Although phase III clinical trials examining bortezomib's role in MDS and AML patients are limited, its underlying mechanisms in MM highlight its potential as a chemotherapeutic for such malignancies. Further research is needed to better understand how the epigenetic mechanisms mediated by these chemotherapeutic agents and their targeted gene networks are associated with the development and progression of MDS into AML. This review discusses the mechanisms by which decitabine, azacitidine, and bortezomib alter epigenetic programs and their results from phase III clinical trials.

3.
Cell Rep ; 35(9): 109190, 2021 06 01.
Article in English | MEDLINE | ID: mdl-34077730

ABSTRACT

Pathological lipid accumulation is often associated with enhanced uptake of free fatty acids via specific transporters in cardiomyocytes. Here, we identify SIRT6 as a critical transcriptional regulator of fatty acid transporters in cardiomyocytes. We find that SIRT6 deficiency enhances the expression of fatty acid transporters, leading to enhanced fatty acid uptake and lipid accumulation. Interestingly, the haploinsufficiency of SIRT6 is sufficient to induce the expression of fatty acid transporters and cause lipid accumulation in murine hearts. Mechanistically, SIRT6 depletion enhances the occupancy of the transcription factor PPARγ on the promoters of critical fatty acid transporters without modulating the acetylation of histone 3 at Lys 9 and Lys 56. Notably, the binding of SIRT6 to the DNA-binding domain of PPARγ is critical for regulating the expression of fatty acid transporters in cardiomyocytes. Our data suggest exploiting SIRT6 as a potential therapeutic target for protecting the heart from metabolic diseases.


Subject(s)
Fatty Acids/metabolism , PPAR gamma/metabolism , Sirtuins/metabolism , Transcription, Genetic , Adult , Animals , Biological Transport/genetics , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , Disease Models, Animal , Female , HEK293 Cells , Heart Failure/genetics , Humans , Male , Membrane Transport Proteins/metabolism , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , PPAR gamma/chemistry , Promoter Regions, Genetic/genetics , Protein Domains , Sirtuins/deficiency , Sirtuins/genetics
4.
Cancers (Basel) ; 12(12)2020 Dec 05.
Article in English | MEDLINE | ID: mdl-33291485

ABSTRACT

Non-coding RNAs (ncRNAs) are untranslated RNA molecules that regulate gene expressions. NcRNAs include small nuclear RNAs (snRNAs), small nucleolar RNAs (snoRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), circular RNAs (cRNAs) and piwi-interacting RNAs (piRNAs). This review focuses on two types of ncRNAs: microRNAs (miRNAs) or short interfering RNAs (siRNAs) and long non-coding RNAs (lncRNAs). We highlight the mechanisms by which miRNAs and lncRNAs impact the epigenome in the context of cancer. Both miRNAs and lncRNAs have the ability to interact with numerous epigenetic modifiers and transcription factors to influence gene expression. The aberrant expression of these ncRNAs is associated with the development and progression of tumors. The primary reason for their deregulated expression can be attributed to epigenetic alterations. Epigenetic alterations can cause the misregulation of ncRNAs. The experimental evidence indicated that most abnormally expressed ncRNAs impact cellular proliferation and apoptotic pathways, and such changes are cancer-dependent. In vitro and in vivo experiments show that, depending on the cancer type, either the upregulation or downregulation of ncRNAs can prevent the proliferation and progression of cancer. Therefore, a better understanding on how ncRNAs impact tumorigenesis could serve to develop new therapeutic treatments. Here, we review the involvement of ncRNAs in cancer epigenetics and highlight their use in clinical therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...