Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Heliyon ; 10(11): e30749, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38867989

ABSTRACT

The knowledge of the polymeric composition of microplastics (MPs) is interesting because offers useful information on the resistance, durability, and degradability of these materials, also allowing progress in the control of this contamination. However, there is currently a lack of reliable standardized methods for the identification, and characterization of the plastic microparticles. This work uses different techniques in a complementary manner for the identification, and characterization of MPs that more frequently are found in the environment. A total of 10 types of plastics were collected (polystyrene (PS), polyethylene terephthalate (PETE), polyethylene (PE), high- and low-density polyethylene (HDPE and LDPE, respectively), polyvinyl chloride (PVC), polypropylene (PP), polytetrafluoroethylene (PTFE), Polyamide (PA, Nylon 6,6) and poly-carbonate (PC)) and their chemical identification were analyzed by reflectance-attenuated infrared (FTIR-ATR). Furthermore, the samples were observed using light microscopy, and scan-ning electron microscopy (SEM). Also, staining with 12 different dyes was performed to improve the identification of microplastics. The results of this study revealed that PETE, PE, HDPE and LDPE, whose SEM images exhibited smoothness and flat uniformity of their surface, were not (or less) susceptible to adsorb staining solutions while PP, PA, PVC, and PTFE, were capable of adsorbing the dye solutions.

2.
Acta Neuropathol Commun ; 12(1): 83, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822428

ABSTRACT

Human brain experimental models recapitulating age- and disease-related characteristics are lacking. There is urgent need for human-specific tools that model the complex molecular and cellular interplay between different cell types to assess underlying disease mechanisms and test therapies. Here we present an adapted ex vivo organotypic slice culture method using human post-mortem brain tissue cultured at an air-liquid interface to also study brain white matter. We assessed whether these human post-mortem brain slices recapitulate the in vivo neuropathology and if they are suitable for pathophysiological, experimental and pre-clinical treatment development purposes, specifically regarding leukodystrophies. Human post-mortem brain tissue and cerebrospinal fluid were obtained from control, psychiatric and leukodystrophy donors. Slices were cultured up to six weeks, in culture medium with or without human cerebrospinal fluid. Human post-mortem organotypic brain slice cultures remained viable for at least six weeks ex vivo and maintained tissue structure and diversity of (neural) cell types. Supplementation with cerebrospinal fluid could improve slice recovery. Patient-derived organotypic slice cultures recapitulated and maintained known in vivo neuropathology. The cultures also showed physiologic multicellular responses to lysolecithin-induced demyelination ex vivo, indicating their suitability to study intrinsic repair mechanisms upon injury. The slice cultures were applicable for various experimental studies, as multi-electrode neuronal recordings. Finally, the cultures showed successful cell-type dependent transduction with gene therapy vectors. These human post-mortem organotypic brain slice cultures represent an adapted ex vivo model suitable for multifaceted studies of brain disease mechanisms, boosting translation from human ex vivo to in vivo. This model also allows for assessing potential treatment options, including gene therapy applications. Human post-mortem brain slice cultures are thus a valuable tool in preclinical research to study the pathomechanisms of a wide variety of brain diseases in living human tissue.


Subject(s)
Brain , Organ Culture Techniques , Humans , Brain/pathology , Brain/metabolism , Male , Female , Aged , Middle Aged , Neurons/metabolism , Neurons/pathology , White Matter/pathology , White Matter/metabolism
3.
Ann Clin Transl Neurol ; 11(4): 973-988, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38425098

ABSTRACT

OBJECTIVE: Multiple sclerosis (MS) is a chronic central nervous system disease whose white matter lesion origin remains debated. Recently, we reported subtle changes in the MS normal appearing white matter (NAWM), presenting with an increase in myelin blisters and myelin protein citrullination, which may recapitulate some of the prodromal degenerative processes involved in MS pathogenesis. Here, to clarify the relevance of these changes for subsequent MS myelin degeneration we explored their prevalence in WM regions characterized by subtly reduced myelination (dubbed as micro-diffusely abnormal white matter, mDAWM). METHODS: We used an in-depth (immuno)histochemistry approach in 27 MS donors with histological presence of mDAWM and 5 controls. An antibody panel against degenerative markers was combined and the presence of myelin/axonal aberrations was analyzed and compared with the NAWM from the same cases/slices/regions. RESULTS: mDAWM-defined areas exhibit ill-defined borders, no signs of Wallerian degeneration, and they associate with visible veins. Remarkably, such areas present with augmented myelin blister frequency, enhanced prevalence of polar myelin phospholipids, citrullination, and degradation of myelin basic protein (MBP) when compared with the NAWM. Furthermore, enhanced reactivity of microglia/macrophages against citrullinated MBP was also observed in this tissue. INTERPRETATION: We report a new histologically defined early phase in MS lesion formation, namely mDAWM, which lacks signs of Wallerian pathology. These results support the prelesional nature of the mDAWM. We conceptualize that evolution to pathologically evident lesions comprises the previously documented imbalance of axo-myelinic units (myelin blistering) leading to their degeneration and immune system activation by released myelin components.


Subject(s)
Multiple Sclerosis , White Matter , Humans , Myelin Sheath/pathology , Multiple Sclerosis/pathology , White Matter/diagnostic imaging , White Matter/pathology , Blister/pathology , Magnetic Resonance Imaging/methods , Chronic Disease
4.
Polymers (Basel) ; 16(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38475318

ABSTRACT

In this research, a molecularly imprinted polymer (MIP) was synthesized by precipitation polymerization using oxazepam (OZ) as a template molecule and was subsequently applied as a selective sorbent for the extraction of diazepam (DZP) and its metabolites in urine samples using an SPE cartridge. OZ, temazepam (TZ), nordiazepam (NZ) and DZP were analyzed in the final extracts by high-performance liquid chromatography with diode array detection (HPLC-DAD). The SPE extraction steps were optimized, and the evaluation of an imprinting factor was carried out. The selectivity of the method for OZ versus structurally related benzodiazepines (BZDs), such as bromazepam (BRZ), tetrazepam (TTZ) and halazepam (HZ), was investigated. Under the optimum conditions, the proposed methodology provided good linearity in the range of 10-1500 ng/mL, with limit of detection values between 13.5 and 21.1 ng/mL and recovery levels for DZP and its metabolites from 89.0 to 93.9% (RSD ≤ 8%) at a concentration level of 1000 ng/mL. The proposed method exhibited good selectivity, precision and accuracy and was applied to the analysis of urine samples from a real case of DZP intake.

5.
Foods ; 13(3)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38338548

ABSTRACT

Microplastics (MPs) and nanoplastics (NPs) are widely spread in the environment, generating significant concern due to their potential impact on environmental health. Marine species usually ingest plastic fragments, mistaking them for food. Many toxic compounds, such as plastic additives that are not chemically bound to the plastic matrix, can be released from MPs and NPs and reach humans via the food chain. This paper highlights the development and validation of a straightforward solid-liquid extraction clean-up procedure in combination with a matrix solid-phase dispersion method using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) detection, enabling facile, precise, and reliable identification and quantitation of a total of six bisphenols and phthalates in gilthead sea breams. Under the optimized conditions, the developed method showed good linearity (R2 > 0.993) for all target compounds. The recoveries obtained were between 70 and 92%. The relative standard deviations (RSDs) for reproducibility (inter-day) and repeatability (intra-day) were less than 9% and 10%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) for the target compounds ranged from 0.11 to 0.68 µg/kg and from 0.37 to 2.28 µg/kg, respectively. A new, efficient extraction methodology for the determination of BPA, BPS, BPF, DBP, DEP, and DHEP in gilthead seabream has been optimized and validated.

6.
Molecules ; 29(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38276610

ABSTRACT

In this work, three series of micro-sized heterometallic europium-containing terephthalate MOFs, (Eu1-xLnx)2bdc3·nH2O (Ln = La, Gd, Lu), are synthesized via an ultrasound-assisted method in an aqueous medium. La3+ and Gd3+-doped terephthalates are isostructural to Eu2bdc3·4H2O. Lu3+-doped compounds are isostructural to Eu2bdc3·4H2O with Lu contents lower than 95 at.%. The compounds that are isostructural to Lu2bdc3·2.5H2O are formed at higher Lu3+ concentrations for the (Eu1-xLux)2bdc3·nH2O series. All materials consist of micrometer-sized particles. The particle shape is determined by the crystalline phase. All the synthesized samples demonstrate an "antenna" effect: a bright-red emission corresponding to the 5D0-7FJ transitions of Eu3+ ions is observed upon 310 nm excitation into the singlet electronic excited state of terephthalate ions. The fine structure of the emission spectra is determined by the crystalline phase due to the different local symmetries of the Eu3+ ions in the different kinds of crystalline structures. The photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are equal to 11 ± 2% and 0.44 ± 0.01 ms, respectively, for the Ln2bdc3·4H2O structures. For the (Eu1-xLux)2bdc3·2.5H2O compounds, significant increases in the photoluminescence quantum yield and 5D0 excited state lifetime of Eu3+ are observed, reaching 23% and 1.62 ms, respectively.

7.
Polymers (Basel) ; 15(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37514510

ABSTRACT

Collagen/hydroxyapatite hybrids are promising biomimetic materials that can replace or temporarily substitute bone tissues. The process of biomineralization was carried out through a double diffusion system. The methodological principle consisted in applying an electric field on the incubation medium to promote the opposite migration of ions into collagen membranes to form hydroxyapatite (HA) on the collagen membrane. Two physically separated solutions were used for the incubation medium, one rich in phosphate ions and the other in calcium ions, and their effects were evaluated against the traditional mineralization in Simulated Body Fluid (SBF). Pre-polarization of the organic membranes and the effect of incubation time on the biomineralization process were also assessed by FTIR and Raman spectroscopies.Our results demonstrated that the membrane pre-polarization significantly accelerated the mineralization process on collagen. On the other side, it was found that the application of the electric field influenced the collagen structure and its interactions with the mineral phase. The increment of the mineralization degree enhanced the photoluminescence properties of the collagen/HA materials, while the conductivity and the dielectric constant were reduced. These results might provide a useful approach for future applications in manufacturing biomimetic bone-like materials.

8.
Eur Heart J ; 44(29): 2698-2709, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37339167

ABSTRACT

AIMS: Epigenetic age is emerging as a personalized and accurate predictor of biological age. The aim of this article is to assess the association of subclinical atherosclerosis with accelerated epigenetic age and to investigate the underlying mechanisms mediating this association. METHODS AND RESULTS: Whole blood methylomics, transcriptomics, and plasma proteomics were obtained for 391 participants of the Progression of Early Subclinical Atherosclerosis study. Epigenetic age was calculated from methylomics data for each participant. Its divergence from chronological age is termed epigenetic age acceleration. Subclinical atherosclerosis burden was estimated by multi-territory 2D/3D vascular ultrasound and by coronary artery calcification. In healthy individuals, the presence, extension, and progression of subclinical atherosclerosis were associated with a significant acceleration of the Grim epigenetic age, a predictor of health and lifespan, regardless of traditional cardiovascular risk factors. Individuals with an accelerated Grim epigenetic age were characterized by an increased systemic inflammation and associated with a score of low-grade, chronic inflammation. Mediation analysis using transcriptomics and proteomics data revealed key pro-inflammatory pathways (IL6, Inflammasome, and IL10) and genes (IL1B, OSM, TLR5, and CD14) mediating the association between subclinical atherosclerosis and epigenetic age acceleration. CONCLUSION: The presence, extension, and progression of subclinical atherosclerosis in middle-aged asymptomatic individuals are associated with an acceleration in the Grim epigenetic age. Mediation analysis using transcriptomics and proteomics data suggests a key role of systemic inflammation in this association, reinforcing the relevance of interventions on inflammation to prevent cardiovascular disease.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Middle Aged , Humans , Multiomics , Atherosclerosis/genetics , Inflammation/genetics , Epigenesis, Genetic , Risk Factors
9.
ACS Omega ; 8(15): 13763-13774, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37091431

ABSTRACT

An improvement in chitosan film photoluminescence was observed after adding LiClO4. FTIR spectra, XPS, DFT calculations, and XRD measurements show an alteration of the H-bonds and an increase in the amorphous character of chitosan. PL spectra display a growth in intensity in the visible region along with the incorporation of lithium, signaling a possible rise in the population density of tail states and, consequently, better photon absorption, as observed from UV-vis measurements. A mechanism through aggregation-induced emission effect is proposed to explain the different results. Although this work establishes the relation between structural changes provoked by LiClO4 incorporation and luminescence in the case of chitosan, we expect that the same approach could be generalized to similar polymeric structures.

10.
Mar Drugs ; 21(3)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36976234

ABSTRACT

In this work, the photochemical reduction method was used at 440 or 540 nm excitation wavelengths to optimize the deposition of silver nanoparticles on the diatom surface as a potential DNA biosensor. The as-synthesized nanocomposites were characterized by ultraviolet-visible spectroscopy (UV-Vis), Fourier transforms infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), fluorescence microscopy, and Raman spectroscopy. Our results revealed a 5.5-fold enhancement in the fluorescence response of the nanocomposite irradiated at 440 nm with DNA. The enhanced sensitivity comes from the optical coupling of the guided-mode resonance of the diatoms and the localized surface plasmon of the silver nanoparticles interacting with the DNA. The advantage of this work involves the use of a low-cost green method to optimize the deposition of plasmonic nanoparticles on diatoms as an alternative fabrication method for fluorescent biosensors.


Subject(s)
Diatoms , Metal Nanoparticles , Metal Nanoparticles/chemistry , Silver/chemistry , Spectrum Analysis, Raman , Spectroscopy, Fourier Transform Infrared
11.
Environ Res ; 214(Pt 3): 114034, 2022 11.
Article in English | MEDLINE | ID: mdl-35948144

ABSTRACT

Microplastic (MP) ingestion, along with accumulated plasticizers such as bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS), and phthalates represented by diethyl phthalate (DEP), dibutyl phthalate (DBP) and bis (2-ethylhexyl) phthalate (DEHP), were quantified in bivalves, fish, and holothurians collected from a coastal pristine area at the western Mediterranean Sea. MP ingestion in sediment-feeders holothurians (mean value 12.67 ± 7.31 MPs/individual) was statistically higher than ingestion in bivalves and fish (mean 4.83 ± 5.35 and 3 ± 4.44 MPs/individual, respectively). The main ingested polymers were polyethylene, polypropylene, and polystyrene. The levels of BPS, BPF, and DEHP were highest in bivalves' soft tissue; BPA and DBP had the highest levels in the holothurians' muscle. In addition, the levels of all plasticizers assessed were lowest in fish muscle; only BPA levels in fish were higher than in bivalves, with intermediate values between those of bivalves and holothurians. This study provides data on exposure to MPs and plasticizers of different species inhabiting Cabrera Marine Protected Area (MPA) and highlights the differences in MP ingestion and levels of plasticizers between species with different ecological characteristics and feeding strategies.


Subject(s)
Bivalvia , Diethylhexyl Phthalate , Phthalic Acids , Animals , Benzhydryl Compounds , Dibutyl Phthalate , Eating , Fishes , Microplastics , Phenols , Plasticizers , Plastics
12.
Front Chem ; 10: 884050, 2022.
Article in English | MEDLINE | ID: mdl-35864867

ABSTRACT

In this investigation, a hydrogen peroxide (H2O2) electrochemical sensor was evaluated. Prussian blue (PB) was electrodeposited at a glassy carbon (GC) electrode modified with titanium dioxide- and zirconia-doped functionalized carbon nanotubes (TiO2.ZrO2-fCNTs), obtaining the PB/TiO2.ZrO2-fCNTs/GC-modified electrode. The morphology and structure of the nanostructured material TiO2.ZrO2-fCNTs was characterized by transmission electron microscopy, the specific surface area was determined via Brunauer-Emmett-Teller, X-ray diffraction, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The electrochemical properties were studied by cyclic voltammetry and chronoamperometry. Titania-zirconia nanoparticles (5.0 ± 2.0 nm) with an amorphous structure were directly synthesized on the fCNT walls, aged during periods of 20 days, obtaining a well-dispersed distribution with a high surface area. The results indicated that the TiO2.ZrO2-fCNT-nanostructured material exhibits good electrochemical properties and could be tunable by enhancing the modification conditions and method of synthesis. Covering of the nanotubes with TiO2-ZrO2 nanoparticles is one of the main factors that affected immobilization and sensitivity of the electrochemical biosensor. The electrode modified with TiO2-ZrO2 nanoparticles with the 20-day aging time was superior regarding its reversibility, electric communication, and high sensitivity and improves the immobilization of the PB at the electrode. The fabricated sensor was used in the detection of H2O2 in whey milk samples, presenting a linear relationship from 100 to 1,000 µmol L-1 between H2O2 concentration and the peak current, with a quantification limit (LQ) of 59.78 µmol L-1 and a detection limit (LD) of 17.93 µmol L-1.

13.
Antioxidants (Basel) ; 11(7)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35883891

ABSTRACT

KEAP1 is a cytoplasmic protein that functions as an adaptor for the Cullin-3-based ubiquitin E3 ligase system, which regulates the degradation of many proteins, including NFE2L2/NRF2 and p62/SQSTM1. Loss of KEAP1 leads to an accumulation of protein ubiquitin aggregates and defective autophagy. To better understand the role of KEAP1 in the degradation machinery, we investigated whether Keap1 deficiency affects the endosome-lysosomal pathway. We used KEAP1-deficient mouse embryonic fibroblasts (MEFs) and combined Western blot analysis and fluorescence microscopy with fluorometric and pulse chase assays to analyze the levels of lysosomal-endosomal proteins, lysosomal function, and autophagy activity. We found that the loss of keap1 downregulated the protein levels and activity of the cathepsin D enzyme. Moreover, KEAP1 deficiency caused lysosomal alterations accompanied by an accumulation of autophagosomes. Our study demonstrates that KEAP1 deficiency increases nondegradative lysosomes and identifies a new role for KEAP1 in lysosomal function that may have therapeutic implications.

14.
Environ Res ; 211: 113063, 2022 08.
Article in English | MEDLINE | ID: mdl-35271834

ABSTRACT

Marine aquaculture is considered a potential source of microplastics (MPs). MPs can induce oxidative stress and damage in marine species. In this study we evaluated the impact of MPs intake in the commercial fish, Sparus aurata, from aquaculture facilities and the antioxidant response associated to this MPs ingestion in caged specimens for 120 days. Sampling was carried out at the beginning of the study (T0), at 60 days (T60) and at 120 days (T120). At each sampling stage, gastrointestinal tract, blood, plasma, liver and muscle samples were obtained to analyse MPs intake (gastrointestinal tract), oxidative stress markers (blood, plasma and liver) and plasticizers bioaccumulation (muscle). Fish sampled at T60 presented the highest MPs intake and plasticizers accumulated in muscle over time, but with a different pattern according to type: bisphenols and phthalates. This indicates MPs ingestion induces a differential tissue response in S. aurata. Similarly, stress biomarkers presented a differential response throughout the study, depending on the analysed tissue. In the case of oxidative damage markers, for malondialdehyde (MDA) an increase throughout the study was observed both in liver and blood cells but with a progressive decrease in plasma. In the case of phase I detoxifying enzyme activities in liver, 7-ethoxyresorufin O-deethylase (EROD), 7-benzyloxy-4-[trifluoromethyl]-coumarin-O-debenzyloxylase (BFCOD) and carboxylesterases (CE), showed a comparable decrease at T60 with a slight recovery at T120. In contrast, glutathione-S-transferase (GST) activity was significantly enhanced at T60 compared to the other sampling stages. In conclusion, MPs ingestion occurs in aquaculture reared seabream where potentially associated plasticizers accumulate in the muscle and both could be responsible for plasma and liver oxidative stress damage and alterations on detoxifying biomarkers responses.


Subject(s)
Sea Bream , Water Pollutants, Chemical , Animals , Aquaculture , Bioaccumulation , Biomarkers/metabolism , Eating , Microplastics , Plasticizers/toxicity , Plastics , Sea Bream/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
15.
Mol Cell Oncol ; 9(1): 2044263, 2022.
Article in English | MEDLINE | ID: mdl-35340790

ABSTRACT

Phenolic compounds derived from olive oil have beneficial health properties against cancer, neurodegenerative, and metabolic diseases. Therefore, there are discrepancies in their impact on mitochondrial function that result in changes in oxidative capacity, mitochondrial respiration, and energetic demands. This review focuses on the versatile role of oleuropein, a potent antioxidant that regulates the AMPK/SIRT1/mTOR pathway to modulate autophagy/mitophagy and maintain metabolic homeostasis.

16.
J Mater Sci Mater Med ; 33(2): 18, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35072812

ABSTRACT

Tissue engineering is growing in developing new technologies focused on providing effective solutions to degenerative pathologies that affect different types of connective tissues. The search for biocompatible, bioactive, biodegradable, and multifunctional materials has grown significantly in recent years. Chitosan, calcium phosphates collagen, and their combination as composite materials fulfill the required properties and could result in biostimulation for tissue regeneration. In the present work, the chitosan/collagen/hydroxyapatite membranes were prepared with different concentrations of collagen and hydroxyapatite. Cell adhesion was evaluated by MTS assay for two in vitro models. Additionally, cytotoxicity of the different membranes employing hemolysis of erythrocytes isolated from human blood was carried out. The structure of the membranes was analyzed by X-rays diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermal stability properties by thermogravimetric methods (TGA). The highest cell adhesion after 48 h was obtained for chitosan membranes with the highest hydroxyapatite and collagen content. All composite membranes showed good cell adhesion and low cytotoxicity, suggesting that these materials have a significant potential to be used as biomaterials for tissue engineering. Graphical abstract.


Subject(s)
Chitosan/chemistry , Collagen/chemistry , Durapatite/chemistry , Mesenchymal Stem Cells/physiology , Tissue Engineering/instrumentation , Cell Survival , Humans , Membranes, Artificial , Molecular Structure , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
17.
Cell Biol Toxicol ; 38(5): 889-911, 2022 10.
Article in English | MEDLINE | ID: mdl-34060004

ABSTRACT

Autophagy is a mechanism responsible for the degradation of cellular components to maintain their homeostasis. However, autophagy is commonly altered and compromised in several diseases, including neurodegenerative disorders. Parkinson's disease (PD) can be considered a multifactorial disease because environmental factors, genetic factors, and aging are involved. Several genes are involved in PD pathology, among which the LRRK2 gene and its mutations, inherited in an autosomal dominant manner, are responsible for most genetic PD cases. The R1441G LRRK2 mutation is, after G2019S, the most important in PD pathogenesis. Our results demonstrate a relationship between the R1441G LRRK2 mutation and a mechanistic dysregulation of autophagy that compromises cell viability. This altered autophagy mechanism is associated with organellar stress including mitochondrial (which induces mitophagy) and endoplasmic reticulum (ER) stress, consistent with the fact that patients with this mutation are more vulnerable to toxins related to PD, such as MPP+.


Subject(s)
Mitophagy , Parkinson Disease , Endoplasmic Reticulum Stress/genetics , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Macroautophagy , Mitophagy/genetics , Mutation/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Serine-Threonine Kinases/genetics
18.
J Hazard Mater ; 424(Pt A): 127264, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34879544

ABSTRACT

The growing plastic production and its continuous use is a significant problem. In addition, aquaculture practices have experienced a considerable growth and plastic is widely used in these activities, hence plasticizers must be considered due to their potential ecotoxicological impacts on species. Mussels placed inside an Integrated Multi-Trophic Aquaculture (IMTA) system and at two control locations were employed to quantify the ingestion of anthropogenic particles and associated chemical plasticizers, such as bisphenol A (BPA) jointly to bisphenol F (BPF) and bisphenol S (BPS), and phthalates represented by diethyl phthalate (DEP), dibutyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP). In addition, some metabolism and oxidative stress related parameters were measured in mussels' whole soft tissue. Anthropogenic particle ingestion of mussels increased over time at the three locations and the following order of abundance of pollutants was observed: BPA> BPF> DEHP> DBP> BPS> DEP. Even though no differences according to location were found for pollutants' occurrence, time trends were evidenced for BPA and DEHP. On the other hand, a location effect was observed for biomarkers with highest values detected in mussels located at the vicinities of the aquaculture facility. In addition, a reduced detoxification activity was observed over time parallel to BPA decrease.


Subject(s)
Mytilus , Phthalic Acids , Animals , Aquaculture , Biological Monitoring , Dibutyl Phthalate , Phthalic Acids/toxicity , Plasticizers/toxicity
19.
Heliyon ; 7(5): e07120, 2021 May.
Article in English | MEDLINE | ID: mdl-34136693

ABSTRACT

The evaluation of glassy carbon (GC) electrodes modified with a Nafion (Nf) film and doped with nanoalloys (Nys) deposits of Ag-Hg and Ag-Bi and their application to determination of Cd (II) and Pb(II) in marine sediments, is described. Deposited Ag-Hg and AgBi Nys have a size of approximately ~80 nm dispersed and embedded inside the booths of the Nf net, while other of them remained on Nf net surface. For the AgBiNysNf-GC electrode, a detection limit (DL), 3 s criterion, slightly higher than for the AgHgNysNf-GC modified electrode was obtained. Accuracy of measurements was asserted by comparison with quantification of Cd and Pb in three sets of marine sediments samples previously analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES). The values of the standard deviation and the coefficients of variation are very low, and also comparable between the different determinations.

20.
Mater Sci Eng C Mater Biol Appl ; 123: 112018, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33812636

ABSTRACT

The use of natural diatoms is currently a topic of interest for therapeutic applications due to its facilities, low cost, and biocompatibility. Here, we report the chemical modification of diatoms Aulacoseria genus microalgae-derived biosilica from Guayllabamba - Ecuador decorated with gold nanoparticles by In-situ and Ex-situ methods to study the in vitro gentamicin loading and release properties in simulated body fluid (SBF). Successful decoration of the diatoms and loaded with gentamicin was confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Raman spectroscopy and Fluorescence Microscopy. We follow the In-vitro drug release by using Ultraviolet-Visible Spectroscopy (UV-vis). Our results revealed that diatoms decorated with gold nanoparticles using the Ex-situ method (Au/CTAB-Diatom) showed a faster release reaching a maximum of 93% in 10 days and a lower loading rate, while the samples decorated by the In-situ method presented longer and slower release behavior. Fluorescence properties were enhanced after the gentamicin loaded. The advantage of this work is the control of the structural and optical properties of diatoms decorated with gold nanoparticles for the gentamicin drug delivery.


Subject(s)
Diatoms , Metal Nanoparticles , Drug Liberation , Gentamicins , Gold , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...