Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Gastroenterology ; 166(5): 826-841.e19, 2024 05.
Article in English | MEDLINE | ID: mdl-38266738

ABSTRACT

BACKGROUND & AIMS: Incapacitated regulatory T cells (Tregs) contribute to immune-mediated diseases. Inflammatory Tregs are evident during human inflammatory bowel disease; however, mechanisms driving the development of these cells and their function are not well understood. Therefore, we investigated the role of cellular metabolism in Tregs relevant to gut homeostasis. METHODS: Using human Tregs, we performed mitochondrial ultrastructural studies via electron microscopy and confocal imaging, biochemical and protein analyses using proximity ligation assay, immunoblotting, mass cytometry and fluorescence-activated cell sorting, metabolomics, gene expression analysis, and real-time metabolic profiling utilizing the Seahorse XF analyzer. We used a Crohn's disease single-cell RNA sequencing dataset to infer the therapeutic relevance of targeting metabolic pathways in inflammatory Tregs. We examined the superior functionality of genetically modified Tregs in CD4+ T-cell-induced murine colitis models. RESULTS: Mitochondria-endoplasmic reticulum appositions, known to mediate pyruvate entry into mitochondria via voltage-dependent anion channel 1 (VDAC1), are abundant in Tregs. VDAC1 inhibition perturbed pyruvate metabolism, eliciting sensitization to other inflammatory signals reversible by membrane-permeable methyl pyruvate supplementation. Notably, interleukin (IL) 21 diminished mitochondria-endoplasmic reticulum appositions, resulting in enhanced enzymatic function of glycogen synthase kinase 3 ß, a putative negative regulator of VDAC1, and a hypermetabolic state that amplified Treg inflammatory response. Methyl pyruvate and glycogen synthase kinase 3 ß pharmacologic inhibitor (LY2090314) reversed IL21-induced metabolic rewiring and inflammatory state. Moreover, IL21-induced metabolic genes in Tregs in vitro were enriched in human Crohn's disease intestinal Tregs. Adoptively transferred Il21r-/- Tregs efficiently rescued murine colitis in contrast to wild-type Tregs. CONCLUSIONS: IL21 triggers metabolic dysfunction associated with Treg inflammatory response. Inhibiting IL21-induced metabolism in Tregs may mitigate CD4+ T-cell-driven chronic intestinal inflammation.


Subject(s)
Colitis , Mitochondria , Animals , Humans , Mice , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Chronic Disease , Colitis/immunology , Colitis/metabolism , Colitis/pathology , Crohn Disease/immunology , Crohn Disease/metabolism , Crohn Disease/pathology , Interleukins/metabolism , Interleukins/pharmacology , Mice, Inbred C57BL , Mitochondria/metabolism , T-Lymphocytes, Regulatory/immunology , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 1/genetics
2.
Gastroenterology ; 166(4): 631-644.e17, 2024 04.
Article in English | MEDLINE | ID: mdl-38211712

ABSTRACT

BACKGROUND & AIMS: The incidence of Crohn's disease (CD) continues to increase worldwide. The contribution of CD4+ cell populations remains to be elucidated. We aimed to provide an in-depth transcriptional assessment of CD4+ T cells driving chronic inflammation in CD. METHODS: We performed single-cell RNA-sequencing in CD4+ T cells isolated from ileal biopsies of patients with CD compared with healthy individuals. Cells underwent clustering analysis, followed by analysis of gene signaling networks. We overlapped our differentially expressed genes with publicly available microarray data sets and performed functional in vitro studies, including an in vitro suppression assay and organoid systems, to model gene expression changes observed in CD regulatory T (Treg) cells and to test predicted therapeutics. RESULTS: We identified 5 distinct FOXP3+ regulatory Treg subpopulations. Tregs isolated from healthy controls represent the origin of pseudotemporal development into inflammation-associated subtypes. These proinflammatory Tregs displayed a unique responsiveness to tumor necrosis factor-α signaling with impaired suppressive activity in vitro and an elevated cytokine response in an organoid coculture system. As predicted in silico, the histone deacetylase inhibitor vorinostat normalized gene expression patterns, rescuing the suppressive function of FOXP3+ cells in vitro. CONCLUSIONS: We identified a novel, proinflammatory FOXP3+ T cell subpopulation in patients with CD and developed a pipeline to specifically target these cells using the US Food and Drug Administration-approved drug vorinostat.


Subject(s)
Crohn Disease , Humans , Crohn Disease/drug therapy , Crohn Disease/genetics , Crohn Disease/metabolism , Vorinostat/metabolism , T-Lymphocytes, Regulatory/metabolism , Inflammation/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
3.
J Clin Invest ; 131(12)2021 06 15.
Article in English | MEDLINE | ID: mdl-34128475

ABSTRACT

FOXP3+ Tregs are expanded within the inflamed intestine of human Crohn's disease, yet FOXP3-mediated gene repression within these cells is lost. The polycomb repressive complexes play a role in FOXP3 target gene regulation, but deeper mechanistic insight is incomplete. We have now specifically identified the polycomb-repressive complex 1 (PRC1) family member, BMI1 in the regulation of a proinflammatory enhancer network in both human and murine Tregs. Using human Tregs and lamina propria T cells, we inferred PRC1 to regulate Crohn's associated gene networks through assays of chromatin accessibility. Conditional deletion of BMI1 in murine FOXP3+ cells led to systemic inflammation. BMI1-deficient Tregs beared a TH1/TH17-like phenotype as assessed by assays of genome wide transcription, chromatin accessibility and proteomic techniques. Finally, BMI1 mutant FOXP3+ cells did not suppress colitis in the adoptive transfer model of human inflammatory bowel disease. We propose that BMI1 plays an important role in enforcing Treg identity in vitro and in vivo. Loss of Treg identity via genetic or transient BMI1 depletion perturbs the epigenome and converts Tregs into Th1/Th17-like proinflammatory cells, a transition relevant to human Crohn's disease associated CD4+ T cells.


Subject(s)
Crohn Disease/immunology , Epigenesis, Genetic/immunology , Polycomb Repressive Complex 1/immunology , Proto-Oncogene Proteins/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Crohn Disease/genetics , Humans , Mice , Mice, Transgenic , Polycomb Repressive Complex 1/genetics , Proto-Oncogene Proteins/genetics , T-Lymphocytes, Regulatory/pathology , Th1 Cells/immunology , Th17 Cells/immunology
4.
Front Immunol ; 9: 2955, 2018.
Article in English | MEDLINE | ID: mdl-30619315

ABSTRACT

T cell lineage decisions are critical for the development of proper immune responses to pathogens as well as important for the resolution of inflammatory responses. This differentiation process relies on a combination of intrinsic and extrinsic factors converging upon epigenetic regulation of transcriptional networks relevant to specific T cell lineages. As these biochemical modifications represent therapeutic opportunities in cancer biology and autoimmunity, implications of writers and readers of epigenetic marks to immune cell differentiation and function are highly relevant. Given the ready adoption of histone methyltransferase inhibitors in the clinic, we focus this review on the role of three histone modifying complexes: PRC-1, PRC-2, and G9A in modulating T cell fate decisions. Furthermore, we explore the role of long non-coding RNAs in regulating these processes, and discuss recent advances and challenges of implementing epigenetic therapies into clinical practice.


Subject(s)
Cell Differentiation/genetics , Epigenesis, Genetic/immunology , Histone Methyltransferases/metabolism , RNA, Long Noncoding/metabolism , T-Lymphocytes/immunology , Cell Differentiation/immunology , Clinical Trials as Topic , DNA Methylation/immunology , Gene Expression Regulation/immunology , Genetic Therapy/methods , Histone Code , Histones/genetics , Histones/immunology , Humans , Immune System Diseases/immunology , Immune System Diseases/surgery , Neoplasms/immunology , Neoplasms/therapy
5.
J Biol Chem ; 292(2): 706-722, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-27909059

ABSTRACT

Regulatory T (Treg) cells expressing the transcription factor FOXP3 play a pivotal role in maintaining immunologic self-tolerance. We and others have shown previously that EZH2 is recruited to the FOXP3 promoter and its targets in Treg cells. To further address the role for EZH2 in Treg cellular function, we have now generated mice that lack EZH2 specifically in Treg cells (EZH2Δ/ΔFOXP3+). We find that EZH2 deficiency in FOXP3+ T cells results in lethal multiorgan autoimmunity. We further demonstrate that EZH2Δ/ΔFOXP3+ T cells lack a regulatory phenotype in vitro and secrete proinflammatory cytokines. Of special interest, EZH2Δ/ΔFOXP3+ mice develop spontaneous inflammatory bowel disease. Guided by these results, we assessed the FOXP3 and EZH2 gene networks by RNA sequencing in isolated intestinal CD4+ T cells from patients with Crohn's disease. Gene network analysis demonstrates that these CD4+ T cells display a Th1/Th17-like phenotype with an enrichment of gene targets shared by FOXP3 and EZH2. Combined, these results suggest that the inflammatory milieu found in Crohn's disease could lead to or result from deregulation of FOXP3/EZH2-enforced T cell gene networks contributing to the underlying intestinal inflammation.


Subject(s)
Crohn Disease/immunology , Enhancer of Zeste Homolog 2 Protein/immunology , Gene Regulatory Networks/immunology , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Animals , Crohn Disease/pathology , Cytokines/genetics , Cytokines/immunology , Enhancer of Zeste Homolog 2 Protein/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Humans , Mice , Mice, Transgenic , T-Lymphocytes, Regulatory/pathology , Th17 Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...