Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(40): 60584-60599, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35420340

ABSTRACT

Nonwoven products are widely used in disposable products, such as wipes, diapers, and masks. Microfibers shed from these products in the aquatic and air environment have not been fully described. In the present study, 15 commercial single-use nonwoven products (wipes) and 16 meltblown nonwoven materials produced in a pilot plant were investigated regarding their microfiber generation in aquatic and air environments and compared to selected textile materials and paper tissue materials. Microfibers shed in water were studied using a Launder Ometer equipment (1-65 mg of microfibers per gram material), and microfibers shed in air were evaluated using a dusting testing machine that shakes a piece of the nonwoven back and forth (~ 4 mg of microfibers per gram material). The raw materials and bonding technologies affected the microfiber generation both in water and air conditions. When the commercial nonwovens contained less natural cellulosic fibers, less microfibers were generated. Bonding with hydroentangling and/or double bonding by two different bonding methods could improve the resistance to microfiber generation. Meltblown nonwoven fabrics generated fewer microfibers compared to the other commercial nonwovens studied here, and the manufacturing factors, such as DCD (die-to-collector distance) and air flow rate, affected the tendency of microfiber generation. The results suggest that it is possible to control the tendency of microfiber shedding through the choice of operating parameters during nonwoven manufacturing processes.


Subject(s)
Textiles , Water Pollutants, Chemical , Wastewater , Water , Water Pollutants, Chemical/analysis
2.
J Environ Manage ; 231: 757-762, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30408769

ABSTRACT

The importance of water pollutants on human health has been the subject of intense study and constitutes perhaps the most significant grand challenge for the future of human society. Water remediation faces many challenges in effectively combating pollution, especially for low income populations where poor water sanitation and little to no access to technically competent and cost effective remediation are nearly insurmountable issues. In an effort to provide low-cost adsorbents, research over the last few years has focused on biological residual materials from plants and animal biomass to not only to add value, but to remediate water at a lower cost with the same or improved efficiency as commercially available option. Crustacean shells are among a class of biological residues that are commonly treated as a waste product of the sea food industry. However, potential valorization by remediation of heavy metal ions, organic matter, and anionic species is a topic of high interest in the current eco-friendly environment. The aim of this review is to provide insight on the state of the art of crustacean shells for addressing water remediation and to offer some perspective regarding challenges and the future of this type of biomass.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Animals , Biomass , Environmental Pollution , Humans , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...