Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-36232180

ABSTRACT

Attention Deficit Hyperactivity Disorder is a neurodevelopmental disorder with three presentations: inattentive, hyperactive/impulsive and combined. These may represent an independent disease entity. Therefore, the therapeutic approach must be focused on their neurobiological, psychological and social characteristics. To date, there is no comprehensive analysis of the efficacy of different treatments for each presentation of ADHD and each stage of development. This is as narrative overview of scientific papers that summarize the most recent findings and identify the most effective pharmacological and psychosocial treatments by ADHD presentation and age range. Evidence suggests that methylphenidate is the safest and most effective drug for the clinical management of children, adolescents and adults. Atomoxetine is effective in preschoolers and maintains similar efficacy to methylphenidate in adults, whereas guanfacine has proven to be an effective monotherapy for adults and is a worthy adjuvant for the management of cognitive symptoms. The psychosocial treatments with the best results in preschoolers are behavioral interventions that include training of primary caregivers. In adolescents, the combination of cognitive and cognitive-behavioral therapies has shown the best results, whereas cognitive-behavioral interventions are the most effective in adults. Pharmacological and psychosocial treatments must be adjusted to the ADHD presentation and its neurocognitive characteristics through the patient's development.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Central Nervous System Stimulants , Methylphenidate , Adolescent , Adult , Atomoxetine Hydrochloride/therapeutic use , Attention Deficit Disorder with Hyperactivity/psychology , Central Nervous System Stimulants/therapeutic use , Child , Guanfacine/therapeutic use , Humans , Methylphenidate/therapeutic use
2.
Antioxidants (Basel) ; 11(9)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36139749

ABSTRACT

The development of type 2 diabetes mellitus (T2DM) vascular complications (VCs) is associated with oxidative stress and chronic inflammation and can result in endothelial dysfunctions. Circulating microRNAs play an important role in epigenetic regulation of the etiology of T2DM. We studied 30 healthy volunteers, 26 T2DM patients with no complications, and 26 T2DM patients with VCs, to look for new biomarkers indicating a risk of developing VCs in T2DM patients. Peripheral blood samples were used to determine redox state, by measuring the endogenous antioxidant defense system (superoxide dismutase, SOD; catalase, CAT; glutathione reductase, GRd; glutathione peroxidase, GPx; and glucose-6-phosphate dehydrogenase, G6DP) and markers of oxidative damage (advanced oxidation protein products, AOPP; lipid peroxidation, LPO). Additionally, inflammatory marker levels (IL-1, IL-6, IL-18, and TNF-α), c-miR-21, and c-miR-126 expression were analyzed. T2DM patients showed the highest oxidative damage with increased GSSG/GSH ratios, LPO, and AOPP levels. In both diabetic groups, we found that diminished SOD activity was accompanied by increased CAT and decreased GRd and G6PD activities. Diabetic patients presented with increased relative expression of c-miR-21 and decreased relative expression of c-miR-126. Overall, c-miR-21, SOD, CAT, and IL-6 had high predictive values for diabetes diagnoses. Finally, our data demonstrated that IL-6 exhibited predictive value for VC development in the studied population. Moreover, c-miR-21 and c-miR-126, along with GPx and AOPP levels, should be considered possible markers for VC development in future studies.

3.
Exp Brain Res ; 240(5): 1617-1627, 2022 May.
Article in English | MEDLINE | ID: mdl-35362723

ABSTRACT

Oligodendrocyte loss and myelin sheet destruction are crucial characteristics of demyelinating diseases. Phenytoin promotes the proliferation of endogenous neural precursor cells in the ventricular-subventricular zone in the postnatal brain that help restore the oligodendroglial population. This study aimed to evaluate whether phenytoin promotes myelin recovery of the corpus callosum of demyelinated adult mice. CD1 male mice were exposed to a demyelinating agent (0.2% cuprizone) for 8 weeks. We assembled two groups: the phenytoin-treated group and the control-vehicle group. The treated group received oral phenytoin (10 mg/kg) for 4 weeks. We quantified the number of Olig2 + and NG2 + oligodendrocyte precursor cells (OPCs), Rip + oligodendrocytes, the expression level of myelin basic protein (MBP), and the muscle strength and motor coordination. The oligodendroglial lineage (Olig2 + cells, NG2 + cells, and RIP + cells) significantly increases by the phenytoin administration when compared to the control-vehicle group. The phenytoin-treated group also showed an increased expression of MBP in the corpus callosum and better functional scores in the horizontal bar test. These findings suggest that phenytoin stimulates the proliferation of OPCs, re-establishes the oligodendroglial population, promotes myelin recovery in the corpus callosum, and improves motor coordination and muscle strength.


Subject(s)
Cuprizone , Neural Stem Cells , Animals , Cell Differentiation , Cell Proliferation , Corpus Callosum , Cuprizone/metabolism , Cuprizone/toxicity , Female , Humans , Male , Mice , Mice, Inbred C57BL , Myelin Basic Protein/metabolism , Myelin Sheath/metabolism , Neural Stem Cells/physiology , Oligodendroglia/metabolism , Phenytoin/metabolism , Phenytoin/pharmacology
4.
Brain Behav ; 11(10): e2341, 2021 10.
Article in English | MEDLINE | ID: mdl-34472728

ABSTRACT

BACKGROUND: Autism Spectrum Disorder (ASD) is considered a neurodevelopmental condition that is characterized by alterations in social interaction and communication, as well as patterns of restrictive and repetitive behaviors (RRBs). RRBs are defined as broad behaviors that comprise stereotypies, insistence on sameness, and attachment to objects or routines. RRBs can be divided into lower-level behaviors (motor, sensory, and object-manipulation behaviors) and higher-level behaviors (restrictive interests, insistence on sameness, and repetitive language). According to the DSM-5, the grade of severity in ASD partially depends on the frequency of RRBs and their consequences for disrupting the life of patients, affecting their adaptive skills, and increasing the need for parental support. METHODS: We conducted a systematic review to examine the biopsychological correlates of the symptomatic domains of RRBs according to the type of RRBs (lower- or higher-level). We searched for articles from the National Library of Medicine (PubMed) using the terms: autism spectrum disorders, ASD, and autism-related to executive functions, inhibitory control, inflexibility, cognitive flexibility, hyper or hypo connectivity, and behavioral approaches. For describing the pathophysiological mechanism of ASD, we also included animal models and followed PRISMA guidelines. RESULTS: One hundred and thirty-one articles were analyzed to explain the etiology, continuance, and clinical evolution of these behaviors observed in ASD patients throughout life. CONCLUSIONS: Biopsychological correlates involved in the origin of RRBs include alterations in a) neurotransmission system, b) brain volume, c) inadequate levels of growth factors, d) hypo- or hyper-neural connectivity, e) impairments in behavioral inhibition, cognitive flexibility, and monitoring and f) non-stimulating environments. Understanding these lower- and higher-level of RRBs can help professionals to improve or design novel therapeutic strategies.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Cognition , Executive Function , Humans , Stereotyped Behavior
5.
J Med Food ; 23(5): 515-522, 2020 May.
Article in English | MEDLINE | ID: mdl-31663807

ABSTRACT

Aging is associated with detrimental cellular and cognitive changes, making it an important public health concern; yet, many of these changes may be influenced by nutritional interventions. The natural sesquiterpene ß-caryophyllene (BCP) has anti-inflammatory and antioxidant effects that are mediated by cannabinoid type-2 receptor activation, and these actions promote neuroprotection in different animal models that involve a cognitive damage. Consequently, whether chronic administration of BCP might prevent the age-related cellular and cognitive damage in a model of aging induced by chronic d-galactose (GAL) consumption was assessed here. Male BALB/c mice were administered BCP (10 mg/kg, oral), GAL (300 mg/kg, intraperitoneal), or GAL+BCP, and long-term memory and cognitive flexibility were evaluated in the normal and the reverse phases of Morris water maze test. In addition, immunohistochemistry was performed on prefrontal and hippocampal brain slices to detect glial acidic fibrillary protein and DNA oxidation. Although GAL administration reduced cognitive flexibility (P = .0308), this functional damage was not reversed by administering BCP. However, GAL administration also elevated the total number of astrocytes and their interactions in the hippocampus, and increasing DNA oxidation in the prefrontal cortex. BCP administration impeded the rise in the total number of astrocytes (P = .0286) and the DNA oxidation (P = .0286) in mice that received GAL. Hence, although BCP did not improve cognitive flexibility, it did produce a neuroprotective effect at the molecular and cellular level in the GAL model of aging.


Subject(s)
Aging , Antioxidants/pharmacology , DNA Damage/drug effects , Glial Fibrillary Acidic Protein/metabolism , Polycyclic Sesquiterpenes/pharmacology , Animals , Disease Models, Animal , Galactose , Hippocampus/drug effects , Male , Mice , Mice, Inbred BALB C , Neuroprotection , Oxidative Stress , Prefrontal Cortex/drug effects
6.
Neural Regen Res ; 14(10): 1787-1795, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31169197

ABSTRACT

Melatonin is a pleiotropic molecule that, after a short-term sleep deprivation, promotes the proliferation of neural stem cells in the adult hippocampus. However, this effect has not been observed in long-term sleep deprivation. The precise mechanism exerted by melatonin on the modulation of neural stem cells is not entirely elucidated, but evidence indicates that epigenetic regulators may be involved in this process. In this study, we investigated the effect of melatonin treatment during a 96-hour sleep deprivation and analyzed the expression of epigenetic modulators predicted by computational text mining and keyword clusterization. Our results showed that the administration of melatonin under sleep-deprived conditions increased the MECP2 expression and reduced the SIRT1 expression in the dentate gyrus. We observed that let-7b, mir-132, and mir-124 were highly expressed in the dentate gyrus after melatonin administration, but they were not modified by sleep deprivation. In addition, we found more Sox2+/5-bromo-2'-deoxyuridine (BrdU)+ cells in the subgranular zone of the sleep-deprived group treated with melatonin than in the untreated group. These findings may support the notion that melatonin modifies the expression of epigenetic mediators that, in turn, regulate the proliferation of neural progenitor cells in the adult dentate gyrus under long-term sleep-deprived conditions. All procedures performed in this study were approved by the Animal Ethics Committee of the University of Guadalajara, Mexico (approval No. CI-16610) on January 2, 2016.

7.
Noise Health ; 19(90): 239-244, 2017.
Article in English | MEDLINE | ID: mdl-28937018

ABSTRACT

BACKGROUND: Chronic exposure to noise induces changes on the central nervous system of exposed animals. Those changes affect not only the auditory system but also other structures indirectly related to audition. The hippocampus of young animals represents a potential target for these effects because of its essential role in individuals' adaptation to environmental challenges. OBJECTIVE: The aim of the present study was to evaluate hippocampus vulnerability, assessing astrocytic morphology in an experimental model of environmental noise (EN) applied to rats in pre-pubescent stage. MATERIALS AND METHODS: Weaned Wistar male rats were subjected to EN adapted to the rats' audiogram for 15 days, 24 h daily. Once completed, plasmatic corticosterone (CORT) concentration was quantified, and immunohistochemistry for glial fibrillary acidic protein was taken in hippocampal DG, CA3, and CA1 subareas. Immunopositive cells and astrocyte arborizations were counted and compared between groups. RESULTS: The rats subjected to noise exhibited enlarged length of astrocytes arborizations in all hippocampal subareas. Those changes were accompanied by a marked rise in serum CORT levels. CONCLUSIONS: These findings confirm hippocampal vulnerability to EN and suggest that glial cells may play an important role in the adaptation of developing the participants to noise exposure.


Subject(s)
Astrocytes/pathology , Environmental Exposure/adverse effects , Hippocampus/cytology , Noise/adverse effects , Animals , Corticosterone/blood , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry , Male , Rats , Rats, Wistar
8.
Front Psychiatry ; 8: 126, 2017.
Article in English | MEDLINE | ID: mdl-28751869

ABSTRACT

Growth factors (GFs) are cytokines that regulate the neural development. Recent evidence indicates that alterations in the expression level of GFs during embryogenesis are linked to the pathophysiology and clinical manifestations of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). In this concise review, we summarize the current evidence that supports the role of brain-derived neurotrophic factor, insulin-like growth factor 2, hepatocyte growth factor (HGF), glial-derived neurotrophic factor, nerve growth factor, neurotrophins 3 and 4, and epidermal growth factor in the pathogenesis of ADHD and ASD. We also highlight the potential use of these GFs as clinical markers for diagnosis and prognosis of these neurodevelopmental disorders.

9.
Pharmaceuticals (Basel) ; 10(3)2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28684694

ABSTRACT

Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by the loss of dopaminergic neurons in the substantia nigra (SN). Although the causes of PD are not understood, evidence suggests that its pathogenesis is associated with oxidative stress and inflammation. Recent studies have suggested a protective role of the cannabinoid signalling system in PD. ß-caryophyllene (BCP) is a natural bicyclic sesquiterpene that is an agonist of the cannabinoid type 2 receptor (CB2R). Previous studies have suggested that BCP exerts prophylactic and/or curative effects against inflammatory bowel disease through its antioxidative and/or anti-inflammatory action. The present study describes the neuroprotective effects of BCP in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced murine model of PD, and we report the results of our investigation of its neuroprotective mechanism in neurons and glial cells. In the murine model, BCP pretreatment ameliorated motor dysfunction, protected against dopaminergic neuronal losses in the SN and striatum, and alleviated MPTP-induced glia activation. Additionally, BCP inhibited the levels of inflammatory cytokines in the nigrostriatal system. The observed neuroprotection and inhibited glia activation were reversed upon treatment with the CB2R selective antagonist AM630, confirming the involvement of the CB2R. These results indicate that BCP acts via multiple neuroprotective mechanisms in our murine model and suggest that BCP may be viewed as a potential treatment and/or preventative agent for PD.

10.
Oxid Med Cell Longev ; 2016: 2136902, 2016.
Article in English | MEDLINE | ID: mdl-27579149

ABSTRACT

Purpose. The aim of this study was to assess the effect of melatonin in the proliferation of neural progenitors, melatonin concentration, and antiapoptotic proteins in the hippocampus of adult mice exposed to 96 h REM sleep deprivation (REMSD) prophylactic administration of melatonin for 14 days. Material and Methods. Five groups of Balb/C mice were used: (1) control, (2) REMSD, (3) melatonin (10 mg/kg) plus REMSD, (4) melatonin and intraperitoneal luzindole (once a day at 5 mg/kg) plus REMSD, and (5) luzindole plus REMSD. To measure melatonin content in hippocampal tissue we used HPLC. Bcl-2 and Bcl-xL proteins were measured by Western Blot and neurogenesis was determined by injecting 5-bromo-2-deoxyuridine (BrdU) and BrdU/nestin expressing cells in the subgranular zone of the dentate gyrus were quantified by epifluorescence. Results. The melatonin-treated REMSD group showed an increased neural precursor in 44% with respect to the REMSD group and in 28% when contrasted with the control group (P < 0.021). The melatonin-treated REMSD group also showed the highest expression of Bcl-2 and Bcl-xL as compared to the rest of the groups. Conclusion. The exogenous administration of melatonin restores the tissue levels of sleep-deprived group and appears to be an efficient neuroprotective agent against the deleterious effects of REMSD.


Subject(s)
Melatonin/administration & dosage , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Sleep Deprivation/pathology , Sleep, REM/drug effects , Administration, Oral , Animals , Cell Proliferation/drug effects , Central Nervous System Depressants/administration & dosage , Central Nervous System Depressants/pharmacokinetics , Hippocampus/metabolism , Male , Melatonin/pharmacokinetics , Mice , Mice, Inbred BALB C , Neural Stem Cells/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Random Allocation , Sleep Deprivation/drug therapy , Sleep Deprivation/metabolism , bcl-X Protein/metabolism
11.
Front Cell Neurosci ; 10: 132, 2016.
Article in English | MEDLINE | ID: mdl-27303266

ABSTRACT

Sleep deprivation (SD) affects spatial memory and proliferation in the dentate gyrus. It is unknown whether these deleterious effects persist in the long run. The aim of this study was to evaluate the proliferation, differentiation and maturation of neural progenitors as well as spatial memory 21 days after suffering SD. Sixty-day old male Balb/C mice were exposed to 72-h REM-SD. Spatial memory, cell fate, apoptosis and expression levels of insulin-like growth factor 1 receptor (IGF-1R) were evaluated in the hippocampus at 0, 14, and 21 days after SD or control conditions. After 21-days recovery period, memory performance was assessed with the Barnes maze, we found a significant memory impairment in SD mice vs. control (94.0 ± 10.2 s vs. 25.2 ± 4.5 s; p < 0.001). The number of BrdU+ cells was significantly decreased in the SD groups at day 14 (controls = 1.6 ± 0.1 vs. SD mice = 1.2 ± 0.1 cells/field; p = 0.001) and at day 21 (controls = 0.2 ± 0.03 vs. SD mice = 0.1 ± 0.02 cells/field; p < 0.001). A statistically significant decrease was observed in neuronal differentiation (1.4 ± 0.1 cells/field vs. 0.9 ± 0.1 cells/field, p = 0.003). Apoptosis was significantly increased at day 14 after SD (0.53 ± 0.06 TUNEL+ cells/field) compared to controls (0.19 ± 0.03 TUNEL+ cells/field p < 0.001) and at 21-days after SD (SD mice 0.53 ± 0.15 TUNEL+ cells/field; p = 0.035). At day 0, IGF-1R expression showed a statistically significant reduction in SD animals (64.6 ± 12.2 units) when compared to the control group (102.0 ± 9.8 units; p = 0.043). However, no statistically significant differences were found at days 14 and 21 after SD. In conclusion, a single exposition to SD for 72-h can induce deleterious effects that persist for at least 3 weeks. These changes are characterized by spatial memory impairment, reduction in the number of hippocampal BrdU+ cells and persistent apoptosis rate. In contrast, changes IGF-1R expression appears to be a transient event. Highlight Sleep deprivation affects spatial memory and proliferation in the dentate gyrus. To date it is unknown whether these deleterious effects are persistent over a long period of time. We analyzed the effects of sleep deprivation in the hippocampus after 21 days of recovery sleep. Our findings indicate that after sleep recovery, the detrimental effects of SD can be observed for at least 2 weeks, as shown by a reduction in memory performance, changes in the hippocampal cellular composition and higher apoptotic rate over a long period of time.

12.
Eur J Neurosci ; 43(2): 139-47, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26370587

ABSTRACT

Phenytoin is a widely used antiepileptic drug that induces cell proliferation in several tissues, such as heart, bone, skin, oral mucosa and neural precursors. Some of these effects are mediated via fibroblast growth factor receptor (FGFR) and epidermal growth factor receptor (EGFR). These receptors are strongly expressed in the adult ventricular-subventricular zone (V-SVZ), the main neurogenic niche in the adult brain. The aim of this study was to determine the cell lineage and cell fate of V-SVZ neural progenitors expanded by phenytoin, as well as the effects of this drug on EGFR/FGFR phosphorylation. Male BALB/C mice received 10 mg/kg phenytoin by oral cannula for 30 days. We analysed the proliferation of V-SVZ neural progenitors by immunohistochemistry and western blot. Our findings indicate that phenytoin enhanced twofold the phosphorylation of EGFR and FGFR in the V-SVZ, increased the number of bromodeoxyuridine (BrdU)+/Sox2+ and BrdU+/doublecortin+ cells in the V-SVZ, and expanded the population of Olig2-expressing cells around the lateral ventricles. After phenytoin removal, a large number of BrdU+/Receptor interacting protein (RIP)+ cells were observed in the olfactory bulb. In conclusion, phenytoin enhanced the phosphorylation of FGFR and EGFR, and promoted the expression of neural precursor markers in the V-SVZ. In parallel, the number of oligodendrocytes increased significantly after phenytoin removal.


Subject(s)
Anticonvulsants/administration & dosage , ErbB Receptors/metabolism , Lateral Ventricles/drug effects , Lateral Ventricles/physiology , Neural Stem Cells/drug effects , Oligodendroglia/drug effects , Phenytoin/administration & dosage , Receptors, Fibroblast Growth Factor/metabolism , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Doublecortin Domain Proteins , Male , Mice , Mice, Inbred BALB C , Microtubule-Associated Proteins/metabolism , Neural Stem Cells/physiology , Neuropeptides/metabolism , Olfactory Bulb/drug effects , Olfactory Bulb/physiology , Oligodendroglia/physiology , Phosphorylation/drug effects , SOXB1 Transcription Factors/metabolism
13.
Exp Anim ; 65(1): 97-107, 2016.
Article in English | MEDLINE | ID: mdl-26548630

ABSTRACT

Anxiety and depressive symptoms are generated after paradoxical sleep deprivation (PSD). However, it is not clear whether PSD produces differential effects between females and males. The aim of this study was to assess the effect of PSD on anxiety- and depressive-like behaviors between sexes. Male and female BALB/c mice were divided in three groups: the control group, the 48-h PSD group and the 96-h PSD group. Immediately after PSD protocols, the forced swimming and open field test were applied. Sucrose consumption test was used to evaluate the middle-term effect of PSD. We found that corticosterone serum levels showed significant differences in the 96-h PSD females as compared to 96-h PSD males. In the open-field test, the 48-h and 96-h PSD females spent more time at the periphery of the field, and showed high locomotion as compared to males. In the elevated plus maze, the 48-h PSD females spent more time in closed arms than males, which is compatible with anxiety-like behavior. The forced swim test indicated that the 96-h PSD males spent more time swimming as compared to the 96-h PSD females. Remarkably, the 96-h PSD males had lower sucrose intake than the 96-h PSD females, which suggest that male mice have proclivity to develop a persistent depressive-like behavior late after PSD. In conclusion, male mice showed a significant trend to depressive-like behaviors late after sleep deprivation. Conversely, female have a strong tendency to display anxiety- and depressive-like behaviors immediately after sleep deprivation.


Subject(s)
Anxiety , Behavior, Animal , Depression , Sex Characteristics , Sleep Deprivation/psychology , Animals , Corticosterone/blood , Eating/physiology , Female , Locomotion , Male , Mice, Inbred BALB C , Sleep Deprivation/blood , Sleep Deprivation/physiopathology , Sucrose
14.
Noise Health ; 17(77): 216-26, 2015.
Article in English | MEDLINE | ID: mdl-26168952

ABSTRACT

In this experiment, we evaluated the long-term effects of noise by assessing both astrocyte changes in medial prefrontal cortex (mPFC) and mPFC-related alternation/discrimination tasks. Twenty-one-day-old male rats were exposed during a period of 15 days to a standardized rats' audiogram-fitted adaptation of a human noisy environment. We measured serum corticosterone (CORT) levels at the end of the exposure and periodically registered body weight gain. In order to evaluate the long-term effects of this exposure, we assessed the rats' performance on the T-maze apparatus 3 months later. Astrocyte numbers and proliferative changes in mPFC were also evaluated at this stage. We found that environmental noise (EN) exposure significantly increased serum CORT levels and negatively affected the body weight gain curve. Accordingly, enduring effects of noise were demonstrated on mPFC. The ability to solve alternation/discrimination tasks was reduced, as well as the number of astroglial cells. We also found reduced cytogenesis among the mPFC areas evaluated. Our results support the idea that early exposure to environmental stressors may have long-lasting consequences affecting complex cognitive processes. These results also suggest that glial changes may become an important element behind the cognitive and morphological alterations accompanying the PFC changes seen in some stress-related pathologies.


Subject(s)
Astrocytes/metabolism , Maze Learning , Memory, Short-Term/physiology , Noise , Prefrontal Cortex/cytology , Prefrontal Cortex/metabolism , Animals , Astrocytes/cytology , Cell Count , Immunohistochemistry , Male , Rats
15.
Genet Mol Biol ; 36(1): 28-36, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23569405

ABSTRACT

Decreased Choline Acetyltransferase (ChAT) brain level is one of the main biochemical disorders in Alzheimer's Disease (AD). In rodents, recent data show that the CHAT gene can be regulated by a neural restrictive silencer factor (NRSF). The aim of the present work was to evaluate the gene and protein expression of CHAT and NRSF in frontal, temporal, entorhinal and parietal cortices of AD patient brains. Four brains from patients with AD and four brains from subjects without dementia were studied. Cerebral tissues were obtained and processed by the guanidine isothiocyanate method for RNA extraction. CHAT and NRSF gene and protein expression were determined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. CHAT gene expression levels were 39% lower in AD patients as compared to the control group (p < 0.05, U test). ChAT protein levels were reduced by 17% (p = 0.02, U test). NRSF gene expression levels were 86% higher in the AD group (p = 0.001, U test) as compared to the control group. In the AD subjects, the NRSF protein levels were 57% higher (p > 0.05, U test) than in the control subjects. These findings suggest for the first time that in the brain of AD patients high NRSF protein levels are related to low CHAT gene expression levels.

17.
Curr Signal Transduct Ther ; 7(1): 81-86, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22347841

ABSTRACT

There are two well-defined neurogenic regions in the adult brain, the subventricular zone (SVZ) lining the lateral wall of the lateral ventricles and, the subgranular zone (SGZ) in the dentate gyrus at the hippocampus. Within these neurogenic regions, there are neural stem cells with astrocytic characteristics, which actively respond to the basic fibroblast growth factor (bFGF, FGF2 or FGF-ß) by increasing their proliferation, survival and differentiation, both in vivo and in vitro. FGF2 binds to fibroblast growth factor receptors 1 to 4 (FGFR1, FGFR2, FGFR3, FGFR4). Interestingly, these receptors are differentially expressed in neurogenic progenitors. During development, FGFR-1 and FGFR-2 drive oligodendrocytes and motor neuron specification. In particular, FGFR-1 determines oligodendroglial and neuronal cell fate, whereas FGFR-2 is related to oligodendrocyte specification. In the adult SVZ, FGF-2 promotes oligodendrogliogenesis and myelination. FGF-2 deficient mice show a reduction in the number of new neurons in the SGZ, which suggests that FGFR-1 is important for neuronal cell fate in the adult hippocampus. In human brain, FGF-2 appears to be an important component in the anti-depressive effect of drugs. In summary, FGF2 is an important modulator of the cell fate of neural precursor and, promotes oligodendrogenesis. In this review, we describe the expression pattern of FGFR2 and its role in neural precursors derived from the SVZ and the SGZ.

18.
Am J Neurosci ; 3(1): 1-9, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-24478822

ABSTRACT

PROBLEM STATEMENT: Diphenylhydantoin (phenytoin) is an antiepileptic drug that generates hyperplasia in some tissue by stimulating Epidermal Growth Factor (EGFR) and Platelet-Derived Growth Factor beta (PDGFR-ß) receptors and by increasing serum levels of basic fibroblast growth factor (bFGF, FGF2 or FGF-ß). Neural stem cells in the adult brain have been isolated from three regions: the Subventricular Zone (SVZ) lining the lateral wall of the lateral ventricles, the Subgranular Zone (SGZ) in the dentate gyrus at the hippocampus and the Subgranular Zone (SZC) lining between the hippocampus and the corpus callosum. Neural stem cells actively respond to bFGF, PDGFR-ß or EGF by increasing their proliferation, survival and differentiation. The aim of this study was to evaluate the effect of phenytoin on proliferation and apoptosis in the three neurogenic niches in the adult brain. APPROACH: We orally administrated phenytoin with an oropharyngeal cannula for 30 days: 0 mg kg-1 (controls), 1, 5, 10, 50 and 100 mg kg-1. To label proliferative cells, three injections of 100 mg kg-1 of BrdU was administrated every 12 h. Immunohistochemistry against BrdU or Caspase-3 active were performed to determine the number of proliferative or apoptotic cells. RESULTS: Our results showed that phenytoin induces proliferation in the SVZ and the SGZ in a dose-dependent manner. No statistically significant effects on cell proliferation in the SCZ neither in the apoptosis rate at the SVZ, SGZ and SCZ were found. CONCLUSION: These data indicate that phenytoin promotes a dose-dependent proliferation in the SVZ and SGZ of the adult brain. The clinical relevance of these findings remain to be elucidated.

19.
World Neurosurg ; 77(3-4): 577-82, 2012.
Article in English | MEDLINE | ID: mdl-22120335

ABSTRACT

OBJECTIVE: To evaluate whether bilayer chitosan scaffolding (BChS) can provide a watertight dural closure and permit regeneration by fibroblasts in an experimental in vivo model. METHODS: In the in vitro phase, BChS was elaborated and the following characteristics were evaluated: pore size, thickness, water absorption capacity, tensile strength, strain, and toughness. In the second in vivo phase, 27 durectomized New Zealand rabbits were randomly assigned into three duraplasty groups with autologous dura, collagen matrix (CM), or BChS. In all groups, fluid leakage pressure was measured at 10, 21, or 180 days. Histology response to regeneration was evaluated through hematoxylin and eosin stain. RESULTS: BChS was standardized to obtain bilayer scaffoldings with a nonporous layer and a porous layer. The pore size was 10 µm, total thickness was 400 µm, strain was 57.8%, and tensile strength was 5.5 gr/mm(2). The physical characteristics of BChS allowed dural closure without cerebrospinal fluid (CSF) leak. There were no differences in fluid leakage pressures between the BChS, dura, and CM groups. Histologic analysis showed fibroblast migration with adequate dural regeneration. CONCLUSIONS: BChS is an ideal alternative for a watertight dural closure because it can be sutured, and it induces organized regeneration with fibroblasts without evidence of fibrosis.


Subject(s)
Chitosan , Dura Mater/physiology , Tissue Scaffolds , Absorption , Algorithms , Animals , Biocompatible Materials , Cell Proliferation , Cerebrospinal Fluid Leak , Cerebrospinal Fluid Rhinorrhea , Collagen , Dura Mater/surgery , Edema/pathology , Fibroblasts/physiology , Microscopy, Electron, Scanning , Porosity , Postoperative Care , Postoperative Complications/pathology , Pressure , Rabbits , Regeneration , Tensile Strength , Water/metabolism
20.
Curr Signal Transduct Ther ; 6(3): 320-326, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-22053150

ABSTRACT

The subventricular zone (SVZ), lining the lateral ventricular system, is the largest germinal region in mammals. In there, neural stem cells express markers related to astoglial lineage that give rise to new neurons and oligodendrocytes in vivo. In the adult human brain, in vitro evidence has also shown that astrocytic cells isolated from the SVZ can generate new neurons and oligodendrocytes. These proliferative cells are strongly controlled by a number of signals and molecules that modulate, activate or repress the cell division, renewal, proliferation and fate of neural stem cells. In this review, we summarize the cellular composition of the adult human SVZ (hSVZ) and discuss the increasing evidence showing that some trophic modulators strongly control the function of neural stem cells in the SVZ.

SELECTION OF CITATIONS
SEARCH DETAIL
...