Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetologia ; 55(9): 2469-78, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22739758

ABSTRACT

AIMS/HYPOTHESIS: Liver X receptor (LXR)α regulates the genes involved in cholesterol, fatty acid and glucose metabolism. Soy protein (SP) consumption reduces the hepatic accumulation of cholesterol and triacylglycerol, and improves insulin sensitivity. However, it is not known whether these effects are mediated via LXRα. We therefore investigated whether the consumption of SP regulates metabolic changes in cholesterol metabolism and insulin sensitivity via LXRα. METHODS: Wild-type (WT) and Lxrα(-/-) (Lxrα, also known as Nr1h3) mice were fed an SP diet with or without cholesterol for 28 days. The expression of LXRα target genes was measured in liver and intestine, as were hepatic lipid content and faecal bile acid concentration. Oral glucose and insulin tolerance tests were also performed. Hepatocytes were used to study the effect of isoflavones on LXR activity. RESULTS: The livers of WT and Lxrα(-/-) mice fed an SP high-cholesterol diet showed less steatosis than those fed casein. The SP diet increased the expression of the ATP-binding cassette (ABC) sub-family genes Abca1, Abcg5 and Abcg8 in the liver and intestine, as well as increasing total faecal bile acid excretion and insulin sensitivity in WT mice compared with mice fed a casein diet. However, these effects of SP were not observed in Lxrα(-/-) mice. The SP isoflavone, genistein, repressed the activation of LXRα target genes by T0901317, whereas it stimulated the activation of LXRß target genes. The AMP-activated protein kinase inhibitor, compound C, had the opposite effects to those of genistein. CONCLUSIONS/INTERPRETATION: Our results suggest that SP isoflavones stimulate the phosphorylation of LXRα or LXRß, resulting in different biological effects for each LXR isoform.


Subject(s)
Hepatocytes/metabolism , Intestinal Mucosa/metabolism , Lipid Metabolism , Liver/metabolism , Orphan Nuclear Receptors , Soybean Proteins/pharmacology , Animals , Bile Acids and Salts/metabolism , Biological Transport , Diet, High-Fat , Gene Expression Regulation , Hepatocytes/drug effects , Insulin Resistance , Isoflavones/metabolism , Lipid Metabolism/drug effects , Liver X Receptors , Male , Mice , Mice, Transgenic , Orphan Nuclear Receptors/drug effects , Orphan Nuclear Receptors/metabolism , Protein Isoforms/metabolism
2.
Amino Acids ; 40(5): 1333-48, 2011 May.
Article in English | MEDLINE | ID: mdl-21390528

ABSTRACT

Physiological role of creatine (Cr) became first evident in the experiments of Belitzer and Tsybakova in 1939, who showed that oxygen consumption in a well-washed skeletal muscle homogenate increases strongly in the presence of creatine and with this results in phosphocreatine (PCr) production with PCr/O(2) ratio of about 5-6. This was the beginning of quantitative analysis in bioenergetics. It was also observed in many physiological experiments that the contractile force changes in parallel with the alteration in the PCr content. On the other hand, it was shown that when heart function is governed by Frank-Starling law, work performance and oxygen consumption rate increase in parallel without any changes in PCr and ATP tissue contents (metabolic homeostasis). Studies of cellular mechanisms of all these important phenomena helped in shaping new approach to bioenergetics, Molecular System Bioenergetics, a part of Systems Biology. This approach takes into consideration intracellular interactions that lead to novel mechanisms of regulation of energy fluxes. In particular, interactions between mitochondria and cytoskeleton resulting in selective restriction of permeability of outer mitochondrial membrane anion channel (VDAC) for adenine nucleotides and thus their recycling in mitochondria coupled to effective synthesis of PCr by mitochondrial creatine kinase, MtCK. Therefore, Cr concentration and the PCr/Cr ratio became important kinetic parameters in the regulation of respiration and energy fluxes in muscle cells. Decrease in the intracellular contents of Cr and PCr results in a hypodynamic state of muscle and muscle pathology. Many experimental studies have revealed that PCr may play two important roles in the regulation of muscle energetics: first by maintaining local ATP pools via compartmentalized creatine kinase reactions, and secondly by stabilizing cellular membranes due to electrostatic interactions with phospholipids. The second mechanism decreases the production of lysophosphoglycerides in hypoxic heart, protects the cardiac cells sarcolemma against ischemic damage, decreases the frequency of arrhythmias and increases the post-ischemic recovery of contractile function. PCr is used as a pharmacological product Neoton in cardiac surgery as one of the components of cardioplegic solutions for protection of the heart against intraoperational injury and injected intravenously in acute myocardial ischemic conditions for improving the hemodynamic response and clinical conditions of patients with heart failure.


Subject(s)
Creatine Kinase/metabolism , Creatine/metabolism , Energy Metabolism , Myocytes, Cardiac/metabolism , Phosphocreatine/metabolism , Animals , Humans , Myocytes, Cardiac/chemistry , Myocytes, Cardiac/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...