Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Reprod Sci ; 28(1): 69-78, 2021 01.
Article in English | MEDLINE | ID: mdl-32725589

ABSTRACT

The aim of this prospective study was to evaluate outcome benefits expected in repeated implantation failure (RIF) patients (n = 217) after customized embryo transfer based upon identification of the receptivity window by transcriptomic approach using the Win-Test. In this test, the expression of 11 endometrial genes known to be predictive of endometrial receptivity is assessed by RT-PCR in biopsies collected during the implantation window (6-9 days after the spontaneous luteinizing hormone surge during natural cycles, 5-9 days after progesterone administration during hormone replacement therapy cycles). Then, patients underwent either customized embryo transfer (cET, n = 157 patients) according to the Win-Test results or embryo transfer according to the classical procedure (control group, n = 60). Pregnancy and live birth rates were compared in the two groups. The Win-Test showed that in 78.5% of women, the receptivity window lasted less than 48 h, although it could be shorter (< 24 h, 9.5%) or longer (> 48 h, 12%). This highlighted that only in 20% of patients with RIF the endometrium would have been receptive if the classical embryo transfer protocol was followed. In the other 80% of patients, the receptivity window was delayed by 1-3 days relative to the classical timing. This suggests that implantation failure could be linked to inadequate timing of embryo transfer. In agreement, both implantation (22.7% vs. 7.2%) and live birth rates per patient (31.8% vs. 8.3%) were significantly higher in the cET group than in the control group. cET on the basis of the Win-Test results could be proposed to improve pregnancy and live birth rates.ClinicalTrials.gov ID: NCT04192396; December 5, 2019, retrospectively registered.


Subject(s)
Cryopreservation , Embryo Implantation/genetics , Embryo Transfer/adverse effects , Fertilization in Vitro/adverse effects , Gene Expression Profiling , Infertility/therapy , Transcriptome , Adult , Female , France , Humans , Infertility/diagnosis , Infertility/physiopathology , Live Birth , Pregnancy , Pregnancy Rate , Prospective Studies , Time Factors , Treatment Failure
3.
Curr Biol ; 18(6): 435-41, 2008 Mar 25.
Article in English | MEDLINE | ID: mdl-18313299

ABSTRACT

In Drosophila, SCALLOPED (SD) belongs to a family of evolutionarily conserved proteins characterized by the presence of a TEA/ATTS DNA-binding domain [1, 2]. SD physically interacts with the product of the vestigial (vg) gene, where the dimer functions as a master gene controlling wing formation [3, 4]. The VG-SD dimer activates the transcription of several specific wing genes, including sd and vg themselves [5, 6]. The dimer drives cell-cycle progression by inducing expression of the dE2F1 transcription factor [7], which regulates genes involved in DNA replication and cell-cycle progression. Recently, YORKIE (YKI) was identified as a transcriptional coactivator that is the downstream effector of the Hippo signaling pathway, which controls cell proliferation and apoptosis in Drosophila[8]. We identified SD as a partner for YKI. We show that interaction between YKI and SD increases SD transcriptional activity both ex vivo in Drosophila S2 cells and in vivo in Drosophila wing discs and promotes YKI nuclear localization. We also show that YKI overexpression induces vg and dE2F1 expression and that proliferation induced by YKI or by a dominant-negative form of FAT in wing disc is significantly reduced in a sd hypomorphic mutant context. Contrary to YKI, SD is not required in all imaginal tissues. This indicates that YKI-SD interaction acts in a tissue-specific fashion and that other YKI partners must exist.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Wings, Animal/growth & development , Animals , Cell Proliferation , Drosophila/growth & development , HeLa Cells , Humans , Morphogenesis/physiology , Protein Kinases/metabolism , Signal Transduction/physiology , Tumor Suppressor Proteins/metabolism , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...