Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 206: 108312, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38154297

ABSTRACT

Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) is an enzyme family with pivotal roles in plant carbon and nitrogen metabolism. A main role for non-photosynthetic PEPC is as anaplerotic enzyme to load tricarboxylic acid (TCA) cycle with carbon skeletons that compensate the intermediates diverted for biomolecule synthesis such as amino acids. When plants are grown under ammonium (NH4+) nutrition, the excessive uptake of NH4+ often provokes a stress situation. When plants face NH4+ stress, N assimilation is greatly induced and thus, requires the supply of carbon skeletons coming from TCA cycle. In this work, we addressed the importance of root PEPC and TCA cycle for sorghum (Sorghum bicolor L. Moench), a C4 cereal crop, grown under ammonium nutrition. To do so, we used RNAi sorghum lines that display a decrease expression of SbPPC3 (Ppc3 lines), the main root PEPC isoform, and reduced root PEPC activity. SbPPC3 silencing provoked ammonium hypersensitivity, meaning lower biomass accumulation in Ppc3 respect to WT plants when growing under ammonium nutrition. The silenced plants presented a deregulation of primary metabolism as highlighted by the accumulation of NH4+ in the root and the alteration of normal TCA functioning, which was evidenced by the accumulation of organic acids in the root under ammonium nutrition. Altogether, our work evidences the importance of non-photosynthetic PEPC, and root TCA cycle, in sorghum to deal with high external NH4+ availability.


Subject(s)
Ammonium Compounds , Sorghum , Ammonium Compounds/metabolism , Phosphoenolpyruvate Carboxylase/genetics , Phosphoenolpyruvate Carboxylase/metabolism , Sorghum/genetics , Sorghum/metabolism , Citric Acid Cycle , Carbon/metabolism
2.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34426500

ABSTRACT

Active nitrifiers and rapid nitrification are major contributing factors to nitrogen losses in global wheat production. Suppressing nitrifier activity is an effective strategy to limit N losses from agriculture. Production and release of nitrification inhibitors from plant roots is termed "biological nitrification inhibition" (BNI). Here, we report the discovery of a chromosome region that controls BNI production in "wheat grass" Leymus racemosus (Lam.) Tzvelev, located on the short arm of the "Lr#3Nsb" (Lr#n), which can be transferred to wheat as T3BL.3NsbS (denoted Lr#n-SA), where 3BS arm of chromosome 3B of wheat was replaced by 3NsbS of L. racemosus We successfully introduced T3BL.3NsbS into the wheat cultivar "Chinese Spring" (CS-Lr#n-SA, referred to as "BNI-CS"), which resulted in the doubling of its BNI capacity. T3BL.3NsbS from BNI-CS was then transferred to several elite high-yielding hexaploid wheat cultivars, leading to near doubling of BNI production in "BNI-MUNAL" and "BNI-ROELFS." Laboratory incubation studies with root-zone soil from field-grown BNI-MUNAL confirmed BNI trait expression, evident from suppression of soil nitrifier activity, reduced nitrification potential, and N2O emissions. Changes in N metabolism included reductions in both leaf nitrate, nitrate reductase activity, and enhanced glutamine synthetase activity, indicating a shift toward ammonium nutrition. Nitrogen uptake from soil organic matter mineralization improved under low N conditions. Biomass production, grain yields, and N uptake were significantly higher in BNI-MUNAL across N treatments. Grain protein levels and breadmaking attributes were not negatively impacted. Wide use of BNI functions in wheat breeding may combat nitrification in high N input-intensive farming but also can improve adaptation to low N input marginal areas.


Subject(s)
Agriculture/methods , Chromosomes, Plant/genetics , Crops, Agricultural/growth & development , Nitrification , Nitrogen/metabolism , Plant Proteins/metabolism , Triticum/growth & development , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Triticum/genetics , Triticum/metabolism
3.
J Plant Physiol ; 239: 83-91, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31229903

ABSTRACT

In higher plants ammonium (NH4+) assimilation occurs mainly through the glutamine synthetase/glutamate synthase (GS/GOGAT) pathway. Nevertheless, when plants are exposed to stress conditions, such as excess of ammonium, the contribution of alternative routes of ammonium assimilation such as glutamate dehydrogenase (GDH) and asparagine synthetase (AS) activities might serve as detoxification mechanisms. In this work, the in vivo functions of these pathways were studied after supplying an excess of ammonium to tomato (Solanum lycopersicum L. cv. Agora Hybrid F1) roots previously adapted to grow under either nitrate or ammonium nutrition. The short-term incorporation of labelled ammonium (15NH4+) into the main amino acids was determined by GC-MS in the presence or absence of methionine sulphoximine (MSX) and azaserine (AZA), inhibitors of GS and GOGAT activities, respectively. Tomato roots were able to respond rapidly to excess ammonium by enhancing ammonium assimilation regardless of the previous nutritional regime to which the plant was adapted to grow. The assimilation of 15NH4+ could take place through pathways other than GS/GOGAT, since the inhibition of GS and GOGAT did not completely impede the incorporation of the labelled nitrogen into major amino acids. The in vivo formation of Asn by AS was shown to be exclusively Gln-dependent since the root was unable to incorporate 15NH4+ directly into Asn. On the other hand, an in vivo aminating capacity was revealed for GDH, since newly labelled Glu synthesis occurred even when GS and/or GOGAT activities were inhibited. The aminating GDH activity in tomato roots responded to an excess ammonium supply independently of the previous nutritional regime to which the plant had been subjected.


Subject(s)
Ammonium Compounds/metabolism , Glutamate Dehydrogenase/metabolism , Plant Roots/metabolism , Solanum lycopersicum/metabolism , Amination , Ammonium Compounds/administration & dosage , Fertilizers , Solanum lycopersicum/drug effects , Solanum lycopersicum/enzymology , Plant Roots/drug effects , Plant Roots/enzymology
4.
Sci Rep ; 9(1): 2346, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30787323

ABSTRACT

Among strategies suggested to decrease agricultural soil N2O losses, the use of nitrification inhibitors such as DMPP (3,4-dimethylpyrazole phosphate) has been proposed. However, the efficiency of DMPP might be affected by soil amendments, such as biochar, which has been shown to reduce N2O emissions. This study evaluated the synergic effect of a woody biochar applied with DMPP on soil N2O emissions. A incubation study was conducted with a silt loam soil and a biochar obtained from Pinus taeda at 500 °C. Two biochar rates (0 and 2% (w/w)) and three different nitrogen treatments (unfertilized, fertilized and fertilized + DMPP) were assayed under two contrasting soil water content levels (40% and 80% of water filled pore space (WFPS)) over a 163 day incubation period. Results showed that DMPP reduced N2O emissions by reducing ammonia-oxidizing bacteria (AOB) populations and promoting the last step of denitrification (measured by the ratio nosZI + nosZII/nirS + nirK genes). Biochar mitigated N2O emissions only at 40% WFPS due to a reduction in AOB population. However, when DMPP was applied to the biochar amended soil, a counteracting effect was observed, since the N2O mitigation induced by DMPP was lower than in control soil, demonstrating that this biochar diminishes the efficiency of the DMPP both at low and high soil water contents.

SELECTION OF CITATIONS
SEARCH DETAIL
...