Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 15: 788258, 2021.
Article in English | MEDLINE | ID: mdl-35145386

ABSTRACT

Error related potentials (ErrP), which are elicited in the EEG in response to a perceived error, have been used for error correction and adaption in the event related potential (ERP)-based brain computer interfaces designed for typing. In these typing interfaces, ERP evidence is collected in response to a sequence of stimuli presented usually in the visual form and the intended user stimulus is probabilistically inferred (stimulus with highest probability) and presented to the user as the decision. If the inferred stimulus is incorrect, ErrP is expected to be elicited in the EEG. Early approaches to use ErrP in the design of typing interfaces attempt to make hard decisions on the perceived error such that the perceived error is corrected and either the sequence of stimuli are repeated to obtain further ERP evidence, or without further repetition the stimulus with the second highest probability is presented to the user as the decision of the system. Moreover, none of the existing approaches use a language model to increase the performance of typing. In this work, unlike the existing approaches, we study the potential benefits of fusing feedback related potentials (FRP), a form of ErrP, with ERP and context information (language model, LM) in a Bayesian fashion to detect the user intent. We present experimental results based on data from 12 healthy participants using RSVP Keyboard™ to complete a copy-phrase-task. Three paradigms are compared: [P1] uses only ERP/LM Bayesian fusion; [P2] each RSVP sequence is appended with the top candidate in the alphabet according to posterior after ERP evidence fusion; corresponding FRP is then incorporated; and [P3] the top candidate is shown as a prospect to generate FRP evidence only if its posterior exceeds a threshold. Analyses indicate that ERP/LM/FRP evidence fusion during decision making yields significant speed-accuracy benefits for the user.

2.
IEEE Trans Neural Syst Rehabil Eng ; 27(5): 798-804, 2019 05.
Article in English | MEDLINE | ID: mdl-30869624

ABSTRACT

Electroencephalography (EEG) is an effective non-invasive measurement method to infer user intent in brain-computer interface (BCI) systems for control and communication, however, these systems often lack sufficient accuracy and speed due to low separability of class-conditional EEG feature distributions. Many factors impact system performance, including inadequate training datasets and models' ignorance of the temporal dependency of brain responses to serial stimuli. Here, we propose a signal model for event-related responses in the EEG evoked with a rapid sequence of stimuli in BCI applications. The model describes the EEG as a superposition of impulse responses time-locked to stimuli corrupted with an autoregressive noise process. The performance of the signal model is assessed in the context of RSVP keyboard, a language-model-assisted EEG-based BCI for typing. EEG data obtained for model calibration from 10 healthy participants are used to fit and compare two models: the proposed sequence-based EEG model and the trial-based feature-class-conditional distribution model that ignores temporal dependencies, which has been used in the previous work. The simulation studies indicate that the earlier model that ignores temporal dependencies may be causing drastic reductions in achievable information transfer rate (ITR). Furthermore, the proposed model, with better regularization, may achieve improved accuracy with fewer calibration data samples, potentially helping to reduce calibration time. Specifically, results show an average 8.6% increase in (cross-validated) calibration AUC for a single channel of EEG, and 54% increase in the ITR in a typing task.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Adult , Algorithms , Area Under Curve , Calibration , Computer Simulation , Female , Healthy Volunteers , Humans , Male , Models, Theoretical , Normal Distribution , Psychomotor Performance , Reproducibility of Results , Signal Processing, Computer-Assisted , Young Adult
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 118-122, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30440354

ABSTRACT

Electroencephalogram (EEG) signals have been shown very effective for inferring user intents in brain-computer interface (BCI) applications. However, existing EEG-based BCIs, in many cases, lack sufficient performance due to utilizing classifiers that operate on EEG signals induced by individual trials. While many factors influence the classification performance, an important aspect that is often ignored is the temporal dependency of these trial-EEG signals, in some cases impacted by interference of brain responses to consecutive target and non-target trials. In this study, the EEG signals are analyzed in a parametric sequence-based fashion, which considers all trials that induce brain responses in a rapid-sequence fashion, including a mixture of consecutive target and non-target trials. EEG signals are described as a linear combination of time-shifted cortical source activities plus measurement noise. Using a superposition of time invariant with an auto-regressive (AR) process, EEG signals are treated as a linear combination of a stationary Gaussian process and time-locked impulse responses to the stimulus (input events) onsets. The model performance is assessed in the framework of a rapid serial visualization presentation (RSVP) based typing task for three healthy subjects across two sessions. Signal modeling in this fashion yields promising performance outcomes considering a single EEG channel to estimate the user intent.


Subject(s)
Brain Mapping , Brain-Computer Interfaces , Electroencephalography , Brain/physiology , Brain Mapping/methods , Electroencephalography/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...