Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37176161

ABSTRACT

Renal hypouricemia (RHUC) is a rare inherited disorder characterized by impaired urate reabsorption in the proximal tubule resulting in low urate serum levels and increased urate excretion. Some patients may present severe complications such as exercise-induced acute renal failure and nephrolithiasis. RHUC is caused by inactivating mutations in the SLC22A12 (RHUC type 1) or SLC2A9 (RHUC type 2) genes, which encode urate transporters URAT1 and GLUT9, respectively. In this study, our goal was to identify mutations associated with twenty-one new cases with RHUC through direct sequencing of SLC22A12 and SLC2A9 coding exons. Additionally, we carried out an SNPs-haplotype analysis to determine whether the rare SLC2A9 variant c.374C>T; p.(T125M), which is recurrent in Spanish families with RHUC type 2, had a common-linked haplotype. Six intragenic informative SNPs were analyzed using PCR amplification from genomic DNA and direct sequencing. Our results showed that ten patients carried the SLC22A12 mutation c.1400C>T; p.(T467M), ten presented the SLC2A9 mutation c.374C>T, and one carried a new SLC2A9 heterozygous mutation, c.593G>A; p.(R198H). Patients carrying the SLC2A9 mutation c.374C>T share a common-linked haplotype, confirming that it emerged due to a founder effect.


Subject(s)
Kidney Calculi , Organic Anion Transporters , Humans , Uric Acid , Founder Effect , Glucose Transport Proteins, Facilitative/genetics , Organic Cation Transport Proteins/genetics , Organic Anion Transporters/genetics
2.
Cell Rep ; 24(3): 755-765, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30021171

ABSTRACT

Organisms regulate gene expression through changes in the activity of transcription factors (TFs). In yeast, the response of genes to changes in TF activity is generally assumed to be encoded in the promoter. To directly test this assumption, we chose 42 genes and, for each, replaced the promoter with a synthetic inducible promoter and measured how protein expression changes as a function of TF activity. Most genes exhibited gene-specific TF dose-response curves not due to differences in mRNA stability, translation, or protein stability. Instead, most genes have an intrinsic ability to buffer the effects of promoter activity. This can be encoded in the open reading frame and the 3' end of genes and can be implemented by both autoregulatory feedback and by titration of limiting trans regulators. We show experimentally and computationally that, when misexpression of a gene is deleterious, this buffering insulates cells from fitness defects due to misregulation.


Subject(s)
Gene Expression Regulation, Fungal , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics , Base Sequence , Dosage Compensation, Genetic , Feedback, Physiological , Genes, Fungal , Homeostasis , Models, Genetic , Open Reading Frames/genetics , Ploidies , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...