Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(1): 1639-1651, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36571844

ABSTRACT

The development of n-type organic semiconductors critically relies on the design and synthesis of highly electron-deficient building blocks with good solubility and small steric hindrance. We report here a strongly electron-deficient dithienylpyrazinediimide (TPDI) and its n-type semiconducting polymers. The pyrazine substitution leads to the resulting polymers with much lower-lying lowest unoccupied molecular orbital (LUMO) levels and improved backbone planarity compared to the reported dithienylbenzodiimide (TBDI)- and fluorinated dithienylbenzodiimide (TFBDI)-based polymer analogues, thus yielding n-type transport character with an electron mobility up to 0.44 cm2 V-1 s-1 in organic thin-film transistors. These results demonstrate that dithienylpyrazinediimide is a highly promising electron-deficient building block for constructing high-performance n-type polymers and the incorporation of pyrazine into imide-functionalized (hetero)arenes is an effective strategy to develop n-type polymers with deep-lying frontier molecular orbital (FMO) levels for organic optoelectronic devices.

2.
Angew Chem Int Ed Engl ; 61(33): e202206680, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35696258

ABSTRACT

Four difluorenoheteroles having a central quinoidal core with the heteroring varying as furan, thiophene, its dioxide derivative and pyrrole have shown to be medium character diradicals. Solid-state structures, optical, photophysical, magnetic, and electrochemical properties have been discussed in terms of diradical character, variation of aromatic character and captodative effects (electron affinity). Organic field-effect transistors (OFETs) have been prepared, showing balanced hole and electron mobilities of the order of 10-3  cm2 V-1 s-1 or ambipolar charge transport which is first inferred from their redox amphoterism. Quantum chemical calculations show that the electrical behavior is originated from the medium diradical character which produces similar reorganization energies for hole and electron transports. The vision of a diradical as simultaneously bearing pseudo-hole and pseudo-electron defects might justify the reduced values of reorganization energies for both regimes. Structure-function relationships between diradical and ambipolar electrical behavior are revealed.

SELECTION OF CITATIONS
SEARCH DETAIL
...