Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 578(1): 117-23, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26692149

ABSTRACT

Exonic mutations are usually classified as missense, synonymous or nonsense mutations, however, they can affect pre-mRNA splicing either by disrupting splice sites, by creating new ones or by changing splicing regulatory sequences. In this study, we examined 21 mutations of the PKD2 gene, encoding polycystin-2, previously reported as missense or synonymous for their possible effects on pre-mRNA splicing using bioinformatics tools. All these mutations except one have been identified in patients with autosomal dominant polycystic kidney disease, a common genetic disorder characterized by the development and progressive enlargement of cysts in the kidneys leading to end-stage renal disease. We selected 12 missense mutations and 1 synonymous variant for the minigene assay, and found that three, c.1532A>T (p.D511V), c.1716G>A (p.K572K) and c.2657A>G (p.D886G) caused alterations in pre-mRNA splicing. Mutation c.1532A>T resulted in skipping of exon 6 and incorporation of a defective exon lacking the 3' end, while c.1716G>A led to skipping of exon 7. Mutation c.2657A>G resulted in incorporation of an incomplete exon 14, which is in agreement with previous results obtained with the patient's lymphoblast RNA. Our findings should be taken into account with regard to the pathogenicity of these PKD2 exonic mutations. These results together with previous reports highlight the importance to evaluate the effects of exonic single nucleotide substitutions in autosomal dominant polycystic kidney disease.


Subject(s)
Alternative Splicing , Mutagenesis, Site-Directed , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/genetics , Animals , COS Cells , Chlorocebus aethiops , Codon, Nonsense , Computational Biology/methods , Exons , HEK293 Cells , Humans , Silent Mutation
2.
RNA Biol ; 12(4): 369-74, 2015.
Article in English | MEDLINE | ID: mdl-25757501

ABSTRACT

The correct splicing of precursor-mRNA depends on the actual splice sites plus exonic and intronic regulatory elements recognized by the splicing machinery. Surprisingly, an increasing number of examples reveal that exonic mutations disrupt the binding of splicing factors to these sequences or generate new splice sites or regulatory elements, causing disease. This contradicts the general assumption that missense mutations disrupt protein function and that synonymous mutations are merely polymorphisms. Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disorder caused mainly by mutations in the PKD1 gene. Recently, we analyzed a substantial number of PKD1 missense or synonymous mutations to further characterize their consequences on pre-mRNA splicing. Our results showed that one missense and 2 synonymous mutations induce significant defects in pre-mRNA splicing. Thus, it appears that aberrant splicing as a result of exonic mutations is a previously unrecognized cause of ADPKD.


Subject(s)
Mutation , Polycystic Kidney, Autosomal Dominant/genetics , RNA Splicing , TRPP Cation Channels/genetics , Exons , Humans , Polymorphism, Genetic , RNA Precursors/metabolism , RNA Splice Sites , TRPP Cation Channels/metabolism
3.
Gene ; 546(2): 243-9, 2014 Aug 10.
Article in English | MEDLINE | ID: mdl-24907393

ABSTRACT

Autosomal dominant polycystic kidney disease is the most common human monogenic disorder and is caused by mutations in the PKD1 or PKD2 genes. Most patients with the disease present mutations in PKD1, and a considerable number of these alterations are single base substitutions within the coding sequence that are usually predicted to lead to missense or synonymous mutations. There is growing evidence that some of these mutations can be detrimental by affecting the pre-mRNA splicing process. The aim of our study was to test PKD1 mutations, described as missense or synonymous in the literature or databases, for their effects on exon inclusion. Bioinformatics tools were used to select mutations with a potential effect on pre-mRNA splicing. Mutations were experimentally tested using minigene assays. Exons and adjacent intronic sequences were PCR-amplified and cloned in the splicing reporter minigene, and selected mutations were introduced by site-directed mutagenesis. Minigenes were transfected into kidney derived cell lines. RNA from cultured cells was analyzed by RT-PCR and DNA sequencing. Analysis of thirty-three PKD1 exonic mutations revealed three mutations that induce splicing defects. The substitution c.11156G>A, previously predicted as missense mutation p.R3719Q, abolished the donor splice site of intron 38 and resulted in the incorporation of exon 38 with 117bp of intron 38 and skipping of exon 39. Two synonymous variants, c.327A>T (p.G109G) and c.11257C>A (p.R3753R), generated strong donor splice sites within exons 3 and 39 respectively, resulting in incorporation of incomplete exons. These three nucleotide substitutions represent the first PKD1 exonic mutations that induce aberrant mRNAs. Our results strengthen the importance to evaluate the consequences of presumed missense and synonymous mutations at the mRNA level.


Subject(s)
Mutation, Missense , Polycystic Kidney, Autosomal Dominant/genetics , RNA Precursors/genetics , RNA Splice Sites , RNA Splicing , TRPP Cation Channels/genetics , Animals , COS Cells , Chlorocebus aethiops , Databases, Nucleic Acid , Exons , Female , Humans , Introns , Male , Polycystic Kidney, Autosomal Dominant/metabolism , RNA Precursors/metabolism , TRPP Cation Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...