Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Nat Commun ; 15(1): 5352, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914547

ABSTRACT

Immune checkpoint blockade (ICB) approaches have changed the therapeutic landscape for many tumor types. However, half of cutaneous squamous cell carcinoma (cSCC) patients remain unresponsive or develop resistance. Here, we show that, during cSCC progression in male mice, cancer cells acquire epithelial/mesenchymal plasticity and change their immune checkpoint (IC) ligand profile according to their features, dictating the IC pathways involved in immune evasion. Epithelial cancer cells, through the PD-1/PD-L1 pathway, and mesenchymal cancer cells, through the CTLA-4/CD80 and TIGIT/CD155 pathways, differentially block antitumor immune responses and determine the response to ICB therapies. Accordingly, the anti-PD-L1/TIGIT combination is the most effective strategy for blocking the growth of cSCCs that contain both epithelial and mesenchymal cancer cells. The expression of E-cadherin/Vimentin/CD80/CD155 proteins in cSCC, HNSCC and melanoma patient samples predicts response to anti-PD-1/PD-L1 therapy. Collectively, our findings indicate that the selection of ICB therapies should take into account the epithelial/mesenchymal features of cancer cells.


Subject(s)
B7-H1 Antigen , Carcinoma, Squamous Cell , Cell Plasticity , Epithelial-Mesenchymal Transition , Immune Checkpoint Inhibitors , Immunotherapy , Skin Neoplasms , Animals , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Skin Neoplasms/therapy , Skin Neoplasms/drug therapy , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/drug therapy , Mice , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Male , Immunotherapy/methods , Epithelial-Mesenchymal Transition/immunology , Cell Plasticity/drug effects , Cell Line, Tumor , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/metabolism , CTLA-4 Antigen/immunology , Receptors, Virus/metabolism , Receptors, Virus/genetics , B7-1 Antigen/metabolism , Receptors, Immunologic/metabolism
2.
Nat Commun ; 14(1): 6213, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37813842

ABSTRACT

Rank signaling pathway regulates mammary gland homeostasis and epithelial cell differentiation. Although Rank receptor is expressed by basal cells and luminal progenitors, its role in each individual cell lineage remains unclear. By combining temporal/lineage specific Rank genetic deletion with lineage tracing techniques, we found that loss of luminal Rank reduces the luminal progenitor pool and leads to aberrant alveolar-like differentiation with high protein translation capacity in virgin mammary glands. These Rank-deleted luminal cells are unable to expand during the first pregnancy, leading to lactation failure and impairment of protein synthesis potential in the parous stage. The unfit parous Rank-deleted luminal cells in the alveoli are progressively replaced by Rank-proficient cells early during the second pregnancy, thereby restoring lactation. Transcriptomic analysis and functional assays point to the awakening of basal bipotency after pregnancy by the induction of Rank/NF-κB signaling in basal parous cell to restore lactation and tissue homeostasis.


Subject(s)
Epithelial Cells , Stem Cells , Pregnancy , Female , Animals , Epithelial Cells/metabolism , Stem Cells/metabolism , Cell Differentiation , Cell Lineage , Signal Transduction , Mammary Glands, Animal/metabolism
3.
EMBO Mol Med ; 15(4): e16715, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36880458

ABSTRACT

Despite strong preclinical data, the therapeutic benefit of the RANKL inhibitor, denosumab, in breast cancer patients, beyond the bone, is unclear. Aiming to select patients who may benefit from denosumab, we hereby analyzed RANK and RANKL protein expression in more than 2,000 breast tumors (777 estrogen receptor-negative, ER- ) from four independent cohorts. RANK protein expression was more frequent in ER- tumors, where it associated with poor outcome and poor response to chemotherapy. In ER- breast cancer patient-derived orthoxenografts (PDXs), RANKL inhibition reduced tumor cell proliferation and stemness, regulated tumor immunity and metabolism, and improved response to chemotherapy. Intriguingly, tumor RANK protein expression associated with poor prognosis in postmenopausal breast cancer patients, activation of NFKB signaling, and modulation of immune and metabolic pathways, suggesting that RANK signaling increases after menopause. Our results demonstrate that RANK protein expression is an independent biomarker of poor prognosis in postmenopausal and ER- breast cancer patients and support the therapeutic benefit of RANK pathway inhibitors, such as denosumab, in breast cancer patients with RANK+ ER- tumors after menopause.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/pathology , Denosumab/pharmacology , Denosumab/therapeutic use , Receptor Activator of Nuclear Factor-kappa B/metabolism , Receptor Activator of Nuclear Factor-kappa B/therapeutic use , Postmenopause , RANK Ligand , Signal Transduction
5.
J Mammary Gland Biol Neoplasia ; 28(1): 2, 2023 02 18.
Article in English | MEDLINE | ID: mdl-36808257

ABSTRACT

Determination of the mammary epithelial cell that serves as the cell of origin for breast cancer is key to understand tumor heterogeneity and clinical management. In this study, we aimed to decipher whether Rank expression in the presence of PyMT and Neu oncogenes might affect the cell of origin of mammary gland tumors. We observed that Rank expression in PyMT+/- and Neu+/- mammary glands alters the basal and luminal mammary cell populations already in preneoplasic tissue, which may interfere with the tumor cell of origin restricting their tumorigenesis ability upon transplantation assays. In spite of this, Rank expression eventually promotes tumor aggressiveness once tumorigenesis is established.


Subject(s)
Ectopic Gene Expression , Mammary Neoplasms, Experimental , Animals , Humans , Mice , Mammary Neoplasms, Experimental/pathology , Carcinogenesis/pathology , Epithelial Cells/metabolism , Oncogenes , Mice, Transgenic
6.
Dev Cell ; 56(12): 1727-1741.e7, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34004159

ABSTRACT

Rank signaling enhances stemness in mouse and human mammary epithelial cells (MECs) and mediates mammary tumor initiation. Mammary tumors initiated by oncogenes or carcinogen exposure display high levels of Rank and Rank pathway inhibitors have emerged as a new strategy for breast cancer prevention and treatment. Here, we show that ectopic Rank expression in the mammary epithelia unexpectedly delays tumor onset and reduces tumor incidence in the oncogene-driven Neu and PyMT models. Mechanistically, we have found that ectopic expression of Rank or exposure to Rankl induces senescence, even in the absence of other oncogenic mutations. Rank leads to DNA damage and senescence through p16/p19. Moreover, RANK-induced senescence is essential for Rank-driven stemness, and although initially translates into delayed tumor growth, eventually promotes tumor progression and metastasis. We uncover a dual role for Rank in the mammary epithelia: Rank induces senescence and stemness, delaying tumor initiation but increasing tumor aggressiveness.


Subject(s)
Breast Neoplasms/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Mammary Neoplasms, Animal/genetics , RANK Ligand/genetics , Receptor Activator of Nuclear Factor-kappa B/genetics , Aging/genetics , Animals , Breast/metabolism , Breast/pathology , Breast Neoplasms/pathology , Cell Transformation, Neoplastic/genetics , DNA Damage/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Mammary Neoplasms, Animal/pathology , Mammary Neoplasms, Experimental , Mice , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology
7.
Breast Cancer Res ; 23(1): 42, 2021 03 30.
Article in English | MEDLINE | ID: mdl-33785053

ABSTRACT

BACKGROUND: Around 15-20% of primary breast cancers are characterized by HER2 protein overexpression and/or HER2 gene amplification. Despite the successful development of anti-HER2 drugs, intrinsic and acquired resistance represents a major hurdle. This study was performed to analyze the RANK pathway contribution in HER2-positive breast cancer and anti-HER2 therapy resistance. METHODS: RANK and RANKL protein expression was assessed in samples from HER2-positive breast cancer patients resistant to anti-HER2 therapy and treatment-naive patients. RANK and RANKL gene expression was analyzed in paired samples from patients treated with neoadjuvant dual HER2-blockade (lapatinib and trastuzumab) from the SOLTI-1114 PAMELA trial. Additionally, HER2-positive breast cancer cell lines were used to modulate RANK expression and analyze in vitro the contribution of RANK signaling to anti-HER2 resistance and downstream signaling. RESULTS: RANK and RANKL proteins are more frequently detected in HER2-positive tumors that have acquired resistance to anti-HER2 therapies than in treatment-naive ones. RANK (but not RANKL) gene expression increased after dual anti-HER2 neoadjuvant therapy in the cohort from the SOLTI-1114 PAMELA trial. Results in HER2-positive breast cancer cell lines recapitulate the clinical observations, with increased RANK expression observed after short-term treatment with the HER2 inhibitor lapatinib or dual anti-HER2 therapy and in lapatinib-resistant cells. After RANKL stimulation, lapatinib-resistant cells show increased NF-κB activation compared to their sensitive counterparts, confirming the enhanced functionality of the RANK pathway in anti-HER2-resistant breast cancer. Overactivation of the RANK signaling pathway enhances ERK and NF-κB signaling and increases lapatinib resistance in different HER2-positive breast cancer cell lines, whereas RANK loss sensitizes lapatinib-resistant cells to the drug. Our results indicate that ErbB signaling is required for RANK/RANKL-driven activation of ERK in several HER2-positive cell lines. In contrast, lapatinib is not able to counteract the NF-κB activation elicited after RANKL treatment in RANK-overexpressing cells. Finally, we show that RANK binds to HER2 in breast cancer cells and that enhanced RANK pathway activation alters HER2 phosphorylation status. CONCLUSIONS: Our data support a physical and functional link between RANK and HER2 signaling in breast cancer and demonstrate that increased RANK signaling may contribute to the development of lapatinib resistance through NF-κB activation. Whether HER2-positive breast cancer patients with tumoral RANK expression might benefit from dual HER2 and RANK inhibition therapy remains to be elucidated.


Subject(s)
Breast Neoplasms/metabolism , Drug Resistance, Neoplasm , Receptor Activator of Nuclear Factor-kappa B/metabolism , Receptor, ErbB-2/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lapatinib/therapeutic use , NF-kappa B/metabolism , Neoadjuvant Therapy , Protein Binding , Receptor Activator of Nuclear Factor-kappa B/genetics , Receptor, ErbB-2/antagonists & inhibitors , Signal Transduction , Trastuzumab/therapeutic use
8.
Clin Cancer Res ; 27(5): 1491-1504, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33262138

ABSTRACT

PURPOSE: Recurrent and/or metastatic unresectable cutaneous squamous cell carcinomas (cSCCs) are treated with chemotherapy or radiotherapy, but have poor clinical responses. A limited response (up to 45% of cases) to EGFR-targeted therapies was observed in clinical trials with patients with advanced and metastatic cSCC. Here, we analyze the molecular traits underlying the response to EGFR inhibitors, and the mechanisms responsible for cSCC resistance to EGFR-targeted therapy. EXPERIMENTAL DESIGN: We generated primary cell cultures and patient cSCC-derived xenografts (cSCC-PDXs) that recapitulate the histopathologic and molecular features of patient tumors. Response to gefitinib treatment was tested and gefitinib-resistant (GefR) cSCC-PDXs were developed. RNA sequence analysis was performed in matched untreated and GefR cSCC-PDXs to determine the mechanisms driving gefitinib resistance. RESULTS: cSCCs conserving epithelial traits exhibited strong activation of EGFR signaling, which promoted tumor cell proliferation, in contrast to mesenchymal-like cSCCs. Gefitinib treatment strongly blocked epithelial-like cSCC-PDX growth in the absence of EGFR and RAS mutations, whereas tumors carrying the E545K PIK3CA-activating mutation were resistant to treatment. A subset of initially responding tumors acquired resistance after long-term treatment, which was induced by the bypass from EGFR to FGFR signaling to allow tumor cell proliferation and survival upon gefitinib treatment. Pharmacologic inhibition of FGFR signaling overcame resistance to EGFR inhibitor, even in PIK3CA-mutated tumors. CONCLUSIONS: EGFR-targeted therapy may be appropriate for treating many epithelial-like cSCCs without PIK3CA-activating mutations. Combined EGFR- and FGFR-targeted therapy may be used to treat cSCCs that show intrinsic or acquired resistance to EGFR inhibitors.


Subject(s)
Drug Resistance, Neoplasm , Gefitinib/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Neoplasms, Glandular and Epithelial/drug therapy , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Skin Neoplasms/drug therapy , Animals , Apoptosis , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Proliferation , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Mutation , Neoplasms, Glandular and Epithelial/metabolism , Neoplasms, Glandular and Epithelial/pathology , Protein Kinase Inhibitors/pharmacology , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Nat Commun ; 11(1): 6335, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303745

ABSTRACT

Most breast cancers exhibit low immune infiltration and are unresponsive to immunotherapy. We hypothesized that inhibition of the receptor activator of nuclear factor-κB (RANK) signaling pathway may enhance immune activation. Here we report that loss of RANK signaling in mouse tumor cells increases leukocytes, lymphocytes, and CD8+ T cells, and reduces macrophage and neutrophil infiltration. CD8+ T cells mediate the attenuated tumor phenotype observed upon RANK loss, whereas neutrophils, supported by RANK-expressing tumor cells, induce immunosuppression. RANKL inhibition increases the anti-tumor effect of immunotherapies in breast cancer through a tumor cell mediated effect. Comparably, pre-operative single-agent denosumab in premenopausal early-stage breast cancer patients from the Phase-II D-BEYOND clinical trial (NCT01864798) is well tolerated, inhibits RANK pathway and increases tumor infiltrating lymphocytes and CD8+ T cells. Higher RANK signaling activation in tumors and serum RANKL levels at baseline predict these immune-modulatory effects. No changes in tumor cell proliferation (primary endpoint) or other secondary endpoints are observed. Overall, our preclinical and clinical findings reveal that tumor cells exploit RANK pathway as a mechanism to evade immune surveillance and support the use of RANK pathway inhibitors to prime luminal breast cancer for immunotherapy.


Subject(s)
Breast Neoplasms/immunology , CD8-Positive T-Lymphocytes/immunology , Immunity , Receptor Activator of Nuclear Factor-kappa B/metabolism , Signal Transduction , Adult , Animals , Breast Neoplasms/blood , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Chemokines/metabolism , Denosumab/pharmacology , Denosumab/therapeutic use , Female , Humans , Immunosuppression Therapy , Immunotherapy , Inflammation Mediators/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Mice, Inbred C57BL , Middle Aged , Models, Biological , Myeloid Cells/immunology , Neoplasm Staging , Neutrophils/immunology , RANK Ligand/blood , RANK Ligand/metabolism
10.
Oncogene ; 38(45): 7106-7112, 2019 11.
Article in English | MEDLINE | ID: mdl-31409895

ABSTRACT

Human tumors show altered patterns of protein isoforms that can be related to the dysregulation of messenger RNA alternative splicing also observed in transformed cells. Although somatic mutations in core spliceosome components and their associated factors have been described in some cases, almost nothing is known about the contribution of distorted epigenetic patterns to aberrant splicing. Herein, we show that the splicing RNA-binding protein CELF2 is targeted by promoter hypermethylation-associated transcriptional silencing in human cancer. Focusing on the context of breast cancer, we also demonstrate that CELF2 restoration has growth-inhibitory effects and that its epigenetic loss induces an aberrant downstream pattern of alternative splicing, affecting key genes in breast cancer biology such as the autophagy factor ULK1 and the apoptotic protein CARD10. Furthermore, the presence of CELF2 hypermethylation in the clinical setting is associated with shorter overall survival of the breast cancer patients carrying this epigenetic lesion.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , CELF Proteins/genetics , DNA Methylation , Epigenesis, Genetic , Nerve Tissue Proteins/genetics , RNA Splicing , Female , Gene Expression Regulation, Neoplastic , Humans , Spliceosomes/genetics , Tumor Cells, Cultured
11.
Mol Cancer Res ; 17(10): 2063-2076, 2019 10.
Article in English | MEDLINE | ID: mdl-31320385

ABSTRACT

Taxanes are standard therapy in clinical practice for metastatic breast cancer; however, primary or acquired chemoresistance are a common cause of mortality. Breast cancer patient-derived xenografts (PDX) are powerful tools for the study of cancer biology and drug treatment response. Specific DNA methylation patterns have been associated to different breast cancer subtypes but its association with chemoresistance remains unstudied. Aiming to elucidate docetaxel resistance mechanisms, we performed genome-wide DNA methylation in breast cancer PDX models, including luminal and triple-negative breast cancer (TNBC) models sensitive to docetaxel, their matched models after emergence of chemoresistance and residual disease after short-term docetaxel treatment. We found that DNA methylation profiles from breast cancer PDX models maintain the subtype-specific methylation patterns of clinical samples. Two main DNA methylation clusters were found in TNBC PDX and remain stable during the emergence of docetaxel resistance; however, some genes/pathways were differentially methylated according to docetaxel response. A DNA methylation signature of resistance able to segregate TNBC based on chemotherapy response was identified. Transcriptomic profiling of selected sensitive/resistant pairs and integrative analysis with methylation data demonstrated correlation between some differentially methylated and expressed genes in docetaxel-resistant TNBC PDX models. Multiple gene expression changes were found after the emergence of docetaxel resistance in TNBC. DNA methylation and transcriptional changes identified between docetaxel-sensitive and -resistant TNBC PDX models or residual disease may have predictive value for chemotherapy response in TNBC. IMPLICATIONS: Subtype-specific DNA methylation patterns are maintained in breast cancer PDX models. While no global methylation changes were found, we uncovered differentially DNA methylated and expressed genes/pathways associated with the emergence of docetaxel resistance in TNBC.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , DNA Methylation/genetics , Docetaxel/therapeutic use , Transcriptome/genetics , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/pathology , Cell Line, Tumor , Disease Models, Animal , Docetaxel/pharmacology , Drug Resistance, Neoplasm , Female , Humans , Mice , Xenograft Model Antitumor Assays
12.
Cancer Res ; 79(16): 4258-4270, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31213465

ABSTRACT

Taxanes are the mainstay of treatment in triple-negative breast cancer (TNBC), with de novo and acquired resistance limiting patient's survival. To investigate the genetic basis of docetaxel resistance in TNBC, exome sequencing was performed on matched TNBC patient-derived xenografts (PDX) sensitive to docetaxel and their counterparts that developed resistance in vivo upon continuous drug exposure. Most mutations, small insertions/deletions, and copy number alterations detected in the initial TNBC human metastatic samples were maintained after serial passages in mice and emergence of resistance. We identified a chromosomal amplification of chr12p in a human BRCA1-mutated metastatic sample and the derived chemoresistant PDX, but not in the matched docetaxel-sensitive PDX tumor. Chr12p amplification was validated in a second pair of docetaxel-sensitive/resistant BRCA1-mutated PDXs and after short-term docetaxel treatment in several TNBC/BRCA1-mutated PDXs and cell lines, as well as during metastatic recurrence in a patient with BRCA1-mutated breast cancer who had progressed on docetaxel treatment. Analysis of clinical data indicates an association between chr12p amplification and patients with TNBC/basal-like breast cancer, a BRCA1 mutational signature, and poor survival after chemotherapy. Detection of chr12p amplification in a cohort of TNBC PDX models was associated with an improved response to carboplatin. Our findings reveal tumor clonal dynamics during chemotherapy treatments and suggest that a preexisting population harboring chr12p amplification is associated with the emergence of docetaxel resistance and carboplatin responsiveness in TNBC/BRCA1-mutated tumors. SIGNIFICANCE: Chr12p copy number gains indicate rapid emergence of resistance to docetaxel and increased sensitivity to carboplatin, therefore sequential docetaxel/carboplatin treatment could improve survival in TNBC/BRCA1 patients. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/16/4258/F1.large.jpg.


Subject(s)
Carboplatin/pharmacology , Chromosomes, Human, Pair 12 , Docetaxel/pharmacology , Drug Resistance, Neoplasm/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Animals , BRCA1 Protein/genetics , Cell Line, Tumor , Exome , Female , Humans , Mice , Mutation , Treatment Outcome , Triple Negative Breast Neoplasms/mortality , Xenograft Model Antitumor Assays
13.
Cancer Treat Rev ; 76: 57-67, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31136850

ABSTRACT

Patients with solid tumours are at risk of impaired bone health from metastases and cancer therapy-induced bone loss (CTIBL). We review medical management of bone health in patients with solid tumours over the past 30 years, from first-generation bisphosphonates to the receptor activator of nuclear factor κB ligand (RANKL)-targeted monoclonal antibody, denosumab. In the 1980s, first-generation bisphosphonates were shown to reduce the incidence of skeletal-related events (SREs) in patients with breast cancer. Subsequently, more potent second- and third-generation bisphosphonates were developed, particularly zoledronic acid (ZA). Head-to-head studies showed that ZA was significantly more effective than pamidronate for reducing SREs in patients with breast and castrate-resistant prostate cancer (CRPC), becoming the standard of care for more than a decade. The RANKL inhibitor denosumab was licensed in 2010, and head-to-head studies and integrated analyses confirmed its superiority to ZA for preventing SREs, particularly in breast cancer and CRPC. Bisphosphonates and denosumab have also been investigated for prevention of CTIBL in patients receiving hormonal therapy for breast and prostate cancer, and denosumab is licensed in this indication. Despite advances in management of bone health, several issues remain, notably the optimal time to initiate therapy, duration of therapy, and dosing frequency, and how to avoid toxicity, particularly with long-term treatment. In summary, introduction of ZA and denosumab has protected patients with bone metastasis from serious bone complications and improved their quality of life. Ongoing research will hopefully guide the optimal use of these agents to help maintain bone health in patients with solid tumours.


Subject(s)
Bone Density Conservation Agents/therapeutic use , Bone Neoplasms/drug therapy , Bone Neoplasms/secondary , Diphosphonates/therapeutic use , Animals , Bone Resorption/drug therapy , Bone Resorption/etiology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Denosumab/therapeutic use , Female , Humans , Male , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Zoledronic Acid/therapeutic use
14.
Oncogene ; 38(25): 5021-5037, 2019 06.
Article in English | MEDLINE | ID: mdl-30874597

ABSTRACT

Advanced and undifferentiated skin squamous cell carcinomas (SCCs) exhibit aggressive growth and enhanced metastasis capability, which is associated in mice with an expansion of the cancer stem-like cell (CSC) population and with changes in the regulatory mechanisms that control the proliferation and invasion of these cells. Indeed, autocrine activation of PDGFRα induces CSC invasion and promotes distant metastasis in advanced SCCs. However, the mechanisms involved in this process were unclear. Here, we show that CSCs of mouse advanced SCCs (L-CSCs) express CXCR4 and CXCR7, both receptors of SDF-1. PDGFRα signaling induces SDF-1 expression and secretion, and the autocrine activation of this pathway in L-CSCs. Autocrine SDF-1/CXCR4 signaling induces L-CSC proliferation and survival, and mediates PDGFRα-induced invasion, promoting in vivo lung metastasis. Validation of these findings in patient samples of skin SCCs shows a strong correlation between the expression of SDF1, PDGFRA, and PDGFRB, which is upregulated, along CXCR4 in tumor cells of advanced SCCs. Furthermore, PDGFR regulates SDF-1 expression and inhibition of SDF-1/CXCR4 and PDGFR pathways blocks distant metastasis of human PD/S-SCCs. Our results indicate that functional crosstalk between PDGFR/SDF-1 signaling regulates tumor cell invasion and metastasis in human and mouse advanced SCCs, and suggest that CXCR4 and/or PDGFR inhibitors could be used to block metastasis of these aggressive tumors.


Subject(s)
Carcinoma, Squamous Cell/pathology , Chemokine CXCL12/metabolism , Neoplastic Stem Cells/metabolism , Receptors, Platelet-Derived Growth Factor/physiology , Skin Neoplasms/pathology , Animals , Autocrine Communication/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Disease Progression , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Nude , Mice, Transgenic , Neoplasm Metastasis , Neoplastic Stem Cells/pathology , Signal Transduction/genetics , Skin Neoplasms/genetics , Skin Neoplasms/metabolism
16.
Breast Cancer Res ; 20(1): 102, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30180882

ABSTRACT

The European Network for Breast Development and Cancer (ENBDC), a worldwide network ( http://www.enbdc.org/ ), celebrated its tenth anniversary with a fantastic meeting last March 15-17, 2018 in Weggis with 76 attendees.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast Neoplasms/therapy , Breast/diagnostic imaging , Mammary Glands, Human/diagnostic imaging , Research Personnel/statistics & numerical data , Biomedical Research/methods , Biomedical Research/trends , Female , Humans
17.
Cancer Cell ; 33(6): 1094-1110.e8, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29805078

ABSTRACT

Breast cancer is the second leading cause of cancer-related death among women. Here we report a role for the protein kinase p38α in coordinating the DNA damage response and limiting chromosome instability during breast tumor progression, and identify the DNA repair regulator CtIP as a p38α substrate. Accordingly, decreased p38α signaling results in impaired ATR activation and homologous recombination repair, with concomitant increases in replication stress, DNA damage, and chromosome instability, leading to cancer cell death and tumor regression. Moreover, we show that pharmacological inhibition of p38α potentiates the effects of taxanes by boosting chromosome instability in murine models and patient-derived xenografts, suggesting the potential interest of combining p38α inhibitors with chemotherapeutic drugs that induce chromosome instability.


Subject(s)
Breast Neoplasms/drug therapy , Chromosomal Instability/drug effects , DNA Damage , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Taxoids/pharmacology , Xenograft Model Antitumor Assays , Animals , Benzamides/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Disease Progression , Female , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Mice, Transgenic , Mitogen-Activated Protein Kinase 14/genetics , Mitogen-Activated Protein Kinase 14/metabolism , Molecular Targeted Therapy , Pyridones/pharmacology , Recombinational DNA Repair/drug effects , Recombinational DNA Repair/genetics
18.
Mol Cell Oncol ; 4(4): e1338208, 2017.
Article in English | MEDLINE | ID: mdl-28868349

ABSTRACT

Taxanes are mainstay treatment of triple negative breast cancer (TNBC) patients but resistance often develops. Using TNBC patient-derived orthoxenografts (PDX) we have recently discovered that a CD49f+ chemoresistant population with tumor-initiating ability is present in sensitive tumors and expands in tumors that have acquired resistance. Importantly, sensitivity to taxanes is recovered after long-term drug interruption. The characterization of this chemoresistant CD49f+ cells provides a unique opportunity to identify novel targets for the treatment of chemoresistant TNBC.

19.
Oncotarget ; 8(31): 51621-51629, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28881673

ABSTRACT

BET bromodomain inhibitors, which have an antitumoral effect against various solid cancer tumor types, have not been studied in detail in luminal breast cancer, despite the prevalence of this subtype of mammary malignancy. Here we demonstrate that the BET bromodomain inhibitor JQ1 exerts growth-inhibitory activity in human luminal breast cancer cell lines associated with a depletion of the C-MYC oncogene, but does not alter the expression levels of the BRD4 bromodomain protein. Interestingly, expression microarray analyses indicate that, upon JQ1 administration, the antitumoral phenotype also involves downregulation of relevant breast cancer oncogenes such as the Breast Carcinoma-Amplified Sequence 1 (BCAS1) and the PDZ Domain-Containing 1 (PDZK1). We have also applied these in vitro findings in an in vivo model by studying a transgenic mouse model representing the luminal B subtype of breast cancer, the MMTV-PyMT, in which the mouse mammary tumor virus promoter is used to drive the expression of the polyoma virus middle T-antigen to the mammary gland. We have observed that the use of the BET bromodomain inhibitor for the treatment of established breast neoplasms developed in the MMTV-PyMT model shows antitumor potential. Most importantly, if JQ1 is given before the expected time of tumor detection in the MMTV-PyMT mice, it retards the onset of the disease and increases the survival of these animals. Thus, our findings indicate that the use of bromodomain inhibitors is of great potential in the treatment of luminal breast cancer and merits further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...