Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(7): 107186, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37456832

ABSTRACT

The COVID-19 pandemic brought attention to our limited understanding of human olfactory physiology. While the cellular composition of the human olfactory epithelium is similar to that of other vertebrates, its functional properties are largely unknown. We prepared acute slices of human olfactory epithelium from nasal biopsies and used the whole-cell patch-clamp technique to record electrical properties of cells. We measured voltage-gated currents in human olfactory sensory neurons and supporting cells, and action potentials in neurons. Additionally, neuronal inward current and action potentials responses to a phosphodiesterase inhibitor suggested a transduction cascade involving cAMP as a second messenger. Furthermore, responses to odorant mixtures demonstrated that the transduction cascade was intact in this preparation. This study provides the first electrophysiological characterization of olfactory sensory neurons in acute slices of the human olfactory epithelium, paving the way for future research to expand our knowledge of human olfactory physiology.

2.
Sci Rep ; 12(1): 11447, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794236

ABSTRACT

Recent data show that Stomatin-like protein 3 (STOML3), a member of the stomatin-domain family, is expressed in the olfactory sensory neurons (OSNs) where it modulates both spontaneous and evoked action potential firing. The protein family is constituted by other 4 members (besides STOML3): STOM, STOML1, STOML2 and podocin. Interestingly, STOML3 with STOM and STOML1 are expressed in other peripheral sensory neurons: dorsal root ganglia. In here, they functionally interact and modulate the activity of the mechanosensitive Piezo channels and members of the ASIC family. Therefore, we investigated whether STOM and STOML1 are expressed together with STOML3 in the OSNs and whether they could interact. We found that all three are indeed expressed in ONSs, although STOML1 at very low level. STOM and STOML3 share a similar expression pattern and STOML3 is necessary for STOM to properly localize to OSN cilia. In addition, we extended our investigation to podocin and STOML2, and while the former is not expressed in the olfactory system, the latter showed a peculiar expression pattern in multiple cell types. In summary, we provided a first complete description of stomatin-domain protein family in the olfactory system, highlighting the precise compartmentalization, possible interactions and, finally, their functional implications.


Subject(s)
Nerve Tissue Proteins , Olfactory Receptor Neurons , Action Potentials , Ganglia, Spinal/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Olfactory Receptor Neurons/metabolism , Sensory Receptor Cells/metabolism
3.
Cell Physiol Biochem ; 56(3): 254-269, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35670331

ABSTRACT

BACKGROUND/AIMS: Quantitative and qualitative alterations in the sense of smell are well established symptoms of COVID-19. Some reports have shown that non-neuronal supporting (also named sustentacular) cells of the human olfactory epithelium co-express ACE2 and TMPRSS2 necessary for SARS-CoV-2 infection. In COVID-19, syncytia were found in many tissues but were not investigated in the olfactory epithelium. Some studies have shown that syncytia in some tissues are formed when SARS-CoV-2 Spike expressed at the surface of an infected cell binds to ACE2 on another cell, followed by activation of the scramblase TMEM16F (also named ANO6) which exposes phosphatidylserine to the external side of the membrane. Furthermore, niclosamide, an approved antihelminthic drug, inhibits Spike-induced syncytia by blocking TMEM16F activity. The aim of this study was to investigate if proteins involved in Spike-induced syncytia formation, i.e., ACE2 and TMEM16F, are expressed in the human olfactory epithelium. METHODS: We analysed a publicly available single-cell RNA-seq dataset from human nasal epithelium and performed immunohistochemistry in human nasal tissues from biopsies. RESULTS: We found that ACE2 and TMEM16F are co-expressed both at RNA and protein levels in non-neuronal supporting cells of the human olfactory epithelium. CONCLUSION: Our results provide the first evidence that TMEM16F is expressed in human olfactory supporting cells and indicate that syncytia formation, that could be blocked by niclosamide, is one of the pathogenic mechanisms worth investigating in COVID-19 smell loss.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Anosmia , Giant Cells , Humans , Lipids , Niclosamide , Olfactory Mucosa/metabolism
4.
eNeuro ; 8(5)2021.
Article in English | MEDLINE | ID: mdl-34433575

ABSTRACT

The mouse vomeronasal system controls several social behaviors. Pheromones and other social cues are detected by sensory neurons in the vomeronasal organ (VNO). Stimuli activate a transduction cascade that leads to membrane potential depolarization, increase in cytosolic Ca2+ level, and increased firing. The Ca2+-activated chloride channels TMEM16A and TMEM16B are co-expressed within microvilli of vomeronasal neurons, but their physiological role remains elusive. Here, we investigate the contribution of each of these channels to vomeronasal neuron firing activity by comparing wild-type (WT) and knock-out (KO) mice. Performing loose-patch recordings from neurons in acute VNO slices, we show that spontaneous activity is modified by Tmem16a KO, indicating that TMEM16A, but not TMEM16B, is active under basal conditions. Upon exposure to diluted urine, a rich source of mouse pheromones, we observe significant changes in activity. Vomeronasal sensory neurons (VSNs) from Tmem16a cKO and Tmem16b KO mice show shorter interspike intervals (ISIs) compared with WT mice, indicating that both TMEM16A and TMEM16B modulate the firing pattern of pheromone-evoked activity in VSNs.


Subject(s)
Pheromones , Vomeronasal Organ , Action Potentials , Animals , Mice , Mice, Knockout , Sensory Receptor Cells
5.
J Physiol ; 599(15): 3697-3714, 2021 08.
Article in English | MEDLINE | ID: mdl-34089532

ABSTRACT

KEY POINTS: Taste transduction occurs in taste buds in the tongue epithelium. The Ca2+ -activated Cl- channels TMEM16A and TMEM16B play relevant physiological roles in several sensory systems. Here, we report that TMEM16A, but not TMEM16B, is expressed in the apical part of taste buds. Large Ca2+ -activated Cl- currents blocked by Ani-9, a selective inhibitor of TMEM16A, are measured in type I taste cells but not in type II or III taste cells. ATP indirectly activates Ca2+ -activated Cl- currents in type I cells through TMEM16A channels. These results indicate that TMEM16A is functional in type I taste cells and contribute to understanding the largely unknown physiological roles of these cells. ABSTRACT: The Ca2+ -activated Cl- channels TMEM16A and TMEM16B have relevant roles in many physiological processes including neuronal excitability and regulation of Cl- homeostasis. Here, we examined the presence of Ca2+ -activated Cl- channels in taste cells of mouse vallate papillae by using immunohistochemistry and electrophysiological recordings. By using immunohistochemistry we showed that only TMEM16A, and not TMEM16B, was expressed in taste bud cells where it largely co-localized with the inwardly rectifying K+ channel KNCJ1 in the apical part of type I cells. By using whole-cell patch-clamp recordings in isolated cells from taste buds, we measured an average current of -1083 pA at -100 mV in 1.5 µm Ca2+ and symmetrical Cl- in type I cells. Ion substitution experiments and blockage by Ani-9, a specific TMEM16A channel blocker, indicated that Ca2+ activated anionic currents through TMEM16A channels. We did not detect any Ca2+ -activated Cl- currents in type II or III taste cells. ATP is released by type II cells in response to various tastants and reaches type I cells where it is hydrolysed by ecto-ATPases. Type I cells also express P2Y purinergic receptors and stimulation of type I cells with extracellular ATP produced large Ca2+ -activated Cl- currents blocked by Ani-9, indicating a possible role of TMEM16A in ATP-mediated signalling. These results provide a definitive demonstration that TMEM16A-mediated currents are functional in type I taste cells and provide a foundation for future studies investigating physiological roles for these often-neglected taste cells.


Subject(s)
Anoctamin-1/metabolism , Taste Buds , Animals , Calcium/metabolism , Chloride Channels , Mice , Patch-Clamp Techniques , Receptors, Purinergic P2Y , Taste Buds/metabolism
6.
eNeuro ; 8(2)2021.
Article in English | MEDLINE | ID: mdl-33637538

ABSTRACT

Stomatin-like protein-3 (STOML3) is an integral membrane protein expressed in the cilia of olfactory sensory neurons (OSNs), but its functional role in this cell type has never been addressed. STOML3 is also expressed in dorsal root ganglia neurons, where it has been shown to be required for normal touch sensation. Here, we extended previous results indicating that STOML3 is mainly expressed in the knob and proximal cilia of OSNs. We additionally showed that mice lacking STOML3 have a morphologically normal olfactory epithelium. Because of its presence in the cilia, together with known olfactory transduction components, we hypothesized that STOML3 could be involved in modulating odorant responses in OSNs. To investigate the functional role of STOML3, we performed loose patch recordings from wild-type (WT) and Stoml3 knock-out (KO) OSNs. We found that spontaneous mean firing activity was lower with additional shift in interspike intervals (ISIs) distributions in Stoml3 KOs compared with WT neurons. Moreover, the firing activity in response to stimuli was reduced both in spike number and duration in neurons lacking STOML3 compared with WT neurons. Control experiments suggested that the primary deficit in neurons lacking STOML3 was at the level of transduction and not at the level of action potential generation. We conclude that STOML3 has a physiological role in olfaction, being required for normal sensory encoding by OSNs.


Subject(s)
Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Olfactory Receptor Neurons , Smell , Animals , Cilia , Mice , Olfactory Mucosa
7.
Sci Rep ; 9(1): 8834, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222082

ABSTRACT

Bitter and sweet receptors (T2Rs and T1Rs) are expressed in many extra-oral tissues including upper and lower airways. To investigate if bitter tastants and artificial sweeteners could activate physiological responses in tracheal epithelial cells we performed confocal Ca2+ imaging recordings on acute tracheal slices. We stimulated the cells with denatonium benzoate, a T2R agonist, and with the artificial sweeteners sucralose, saccharin and acesulfame-K. To test cell viability we measured responses to ATP. We found that 39% of the epithelial cells responding to ATP also responded to bitter stimulation with denatonium benzoate. Moreover, artificial sweeteners activated different percentages of the cells, ranging from 5% for sucralose to 26% for saccharin, and 27% for acesulfame-K. By using carbenoxolone, a gap junction blocker, we excluded that responses were mainly mediated by Ca2+ waves through cell-to-cell junctions. Pharmacological experiments showed that both denatonium and artificial sweeteners induced a PLC-mediated release of Ca2+ from internal stores. In addition, bitter tastants and artificial sweeteners activated a partially overlapping subpopulation of tracheal epithelial cells. Our results provide new evidence that a subset of ATP-responsive tracheal epithelial cells from rat are activated by both bitter tastants and artificial sweeteners.


Subject(s)
Epithelial Cells/metabolism , Receptors, G-Protein-Coupled/agonists , Sweetening Agents/pharmacology , Taste/physiology , Trachea/cytology , Animals , Calcium/metabolism , Calcium Signaling , Epithelial Cells/drug effects , Rats , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/metabolism , Saccharin/pharmacology , Sucrose/analogs & derivatives , Sucrose/pharmacology , Thiazines/pharmacology , Trachea/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...