Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 451
Filter
3.
Cells ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786068

ABSTRACT

Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease.


Subject(s)
Cell Adhesion , Diabetes Mellitus, Experimental , Focal Adhesion Protein-Tyrosine Kinases , Podocytes , Proteinuria , Receptor, Adenosine A2B , Podocytes/metabolism , Podocytes/drug effects , Podocytes/pathology , Animals , Humans , Proteinuria/metabolism , Rats , Receptor, Adenosine A2B/metabolism , Cell Adhesion/drug effects , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Male , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/drug therapy , Adenosine A2 Receptor Antagonists/pharmacology , Adenosine/metabolism , Adenosine/pharmacology , Cell Movement/drug effects , Phosphorylation/drug effects , Myosin Light Chains/metabolism
4.
Proc Natl Acad Sci U S A ; 121(18): e2313107121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38652742

ABSTRACT

Full understanding of proteostasis and energy utilization in cells will require knowledge of the fraction of cell proteins being degraded with different half-lives and their rates of synthesis. We therefore developed a method to determine such information that combines mathematical analysis of protein degradation kinetics obtained in pulse-chase experiments with Bayesian data fitting using the maximum entropy principle. This approach will enable rapid analyses of whole-cell protein dynamics in different cell types, physiological states, and neurodegenerative disease. Using it, we obtained surprising insights about protein stabilities in cultured cells normally and upon activation of proteolysis by mTOR inhibition and increasing cAMP or cGMP. It revealed that >90% of protein content in dividing mammalian cell lines is long-lived, with half-lives of 24 to 200 h, and therefore comprises much of the proteins in daughter cells. The well-studied short-lived proteins (half-lives < 10 h) together comprise <2% of cell protein mass, but surprisingly account for 10 to 20% of measurable newly synthesized protein mass. Evolution thus appears to have minimized intracellular proteolysis except to rapidly eliminate misfolded and regulatory proteins.


Subject(s)
Entropy , Proteolysis , Proteome , Proteome/metabolism , Humans , Animals , Bayes Theorem , Proteostasis , Kinetics , Cyclic AMP/metabolism , TOR Serine-Threonine Kinases/metabolism , Cyclic GMP/metabolism
5.
BMC Med Inform Decis Mak ; 24(1): 60, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429718

ABSTRACT

INTRODUCTION: Epilepsy is a disease characterized by an excessive discharge in neurons generally provoked without any external stimulus, known as convulsions. About 2 million people are diagnosed each year in the world. This process is carried out by a neurological doctor using an electroencephalogram (EEG), which is lengthy. METHOD: To optimize these processes and make them more efficient, we have resorted to innovative artificial intelligence methods essential in classifying EEG signals. For this, comparing traditional models, such as machine learning or deep learning, with cutting-edge models, in this case, using Capsule-Net architectures and Transformer Encoder, has a crucial role in finding the most accurate model and helping the doctor to have a faster diagnosis. RESULT: In this paper, a comparison was made between different models for binary and multiclass classification of the epileptic seizure detection database, achieving a binary accuracy of 99.92% with the Capsule-Net model and a multiclass accuracy with the Transformer Encoder model of 87.30%. CONCLUSION: Artificial intelligence is essential in diagnosing pathology. The comparison between models is helpful as it helps to discard those that are not efficient. State-of-the-art models overshadow conventional models, but data processing also plays an essential role in evaluating the higher accuracy of the models.


Subject(s)
Artificial Intelligence , Epilepsy , Humans , Epilepsy/diagnosis , Seizures/diagnosis , Algorithms , Machine Learning , Electroencephalography
6.
Actas Dermosifiliogr ; 2024 Mar 06.
Article in English, Spanish | MEDLINE | ID: mdl-38452892

ABSTRACT

The incidence of sexually transmitted diseases has been on the rise in our setting for decades. These infections represent not only an individual problem, but also a problem of public health. Therefore, the management of STDs involves reducing community incidence, which means that common issues in the clinical practice such as failure to attend may become a more complex problem, which adds to the difficult and delicate task of locating sexual contacts that would benefit from screening and the appropriate treatment. On the other hand, STDs have direct legal implications in cases of underage patients, or suspected sexual assault. Therefore, the correct handling of these scenarios requires knowledge of the legal framework that regulates them. Dermatologists are clinically trained and prepared to deal with these conditions. Nonetheless, the legal issues involved are often difficult to solve. This document stands as a simple reference guide to help solve the main legal issues we may encounter in a consultation when dealing with STDs.

7.
Cells ; 13(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38391929

ABSTRACT

In this study, we investigated the inter-organelle communication between the Golgi apparatus (GA) and mitochondria. Previous observations suggest that GA-derived vesicles containing phosphatidylinositol 4-phosphate (PI(4)P) play a role in mitochondrial fission, colocalizing with DRP1, a key protein in this process. However, the functions of these vesicles and potentially associated proteins remain unknown. GOLPH3, a PI(4)P-interacting GA protein, is elevated in various types of solid tumors, including breast cancer, yet its precise role is unclear. Interestingly, GOLPH3 levels influence mitochondrial mass by affecting cardiolipin synthesis, an exclusive mitochondrial lipid. However, the mechanism by which GOLPH3 influences mitochondria is not fully understood. Our live-cell imaging analysis showed GFP-GOLPH3 associating with PI(4)P vesicles colocalizing with YFP-DRP1 at mitochondrial fission sites. We tested the functional significance of these observations with GOLPH3 knockout in MDA-MB-231 cells of breast cancer, resulting in a fragmented mitochondrial network and reduced bioenergetic function, including decreased mitochondrial ATP production, mitochondrial membrane potential, and oxygen consumption. Our findings suggest a potential negative regulatory role for GOLPH3 in mitochondrial fission, impacting mitochondrial function and providing insights into GA-mitochondria communication.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , MDA-MB-231 Cells , Mitochondrial Dynamics , Golgi Apparatus/metabolism , Energy Metabolism , Membrane Proteins/metabolism
8.
Alzheimers Dement (Amst) ; 16(1): e12467, 2024.
Article in English | MEDLINE | ID: mdl-38312514

ABSTRACT

INTRODUCTION: Age-related hearing loss is an important risk factor for cognitive decline. However, audiogram thresholds are not good estimators of dementia risk in subjects with normal hearing or mild hearing loss. Here we propose to use distortion product otoacoustic emissions (DPOAEs) as an objective and sensitive tool to estimate the risk of cognitive decline in older adults with normal hearing or mild hearing loss. METHODS: We assessed neuropsychological, brain magnetic resonance imaging, and auditory analyses on 94 subjects > 64 years of age. RESULTS: We found that cochlear dysfunction, measured by DPOAEs-and not by conventional audiometry-was associated with Clinical Dementia Rating Sum of Boxes (CDR-SoB) classification and brain atrophy in the group with mild hearing loss (25 to 40 dB) and normal hearing (<25 dB). DISCUSSION: Our findings suggest that DPOAEs may be a non-invasive tool for detecting neurodegeneration and cognitive decline in the older adults, potentially allowing for early intervention.

9.
J Biol Chem ; 300(3): 105700, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38307383

ABSTRACT

Selective retrograde transport from endosomes back to the trans-Golgi network (TGN) is important for maintaining protein homeostasis, recycling receptors, and returning molecules that were transported to the wrong compartments. Two important transmembrane proteins directed to this pathway are the Cation-Independent Mannose-6-phosphate receptor (CI-MPR) and the ATP7B copper transporter. Among CI-MPR functions is the delivery of acid hydrolases to lysosomes, while ATP7B facilitates the transport of cytosolic copper ions into organelles or the extracellular space. Precise subcellular localization of CI-MPR and ATP7B is essential for the proper functioning of these proteins. This study shows that both CI-MPR and ATP7B interact with a variant of the clathrin adaptor 1 (AP-1) complex that contains a specific isoform of the γ-adaptin subunit called γ2. Through synchronized anterograde trafficking and cell-surface uptake assays, we demonstrated that AP-1γ2 is dispensable for ATP7B and CI-MPR exit from the TGN while being critically required for ATP7B and CI-MPR retrieval from endosomes to the TGN. Moreover, AP-1γ2 depletion leads to the retention of endocytosed CI-MPR in endosomes enriched in retromer complex subunits. These data underscore the importance of AP-1γ2 as a key component in the sorting and trafficking machinery of CI-MPR and ATP7B, highlighting its essential role in the transport of proteins from endosomes.


Subject(s)
Adaptor Protein Complex 1 , Copper-Transporting ATPases , Endosomes , Protein Transport , Receptor, IGF Type 2 , trans-Golgi Network , Humans , Endosomes/metabolism , HeLa Cells , Protein Transport/genetics , Receptor, IGF Type 2/genetics , Receptor, IGF Type 2/metabolism , trans-Golgi Network/genetics , trans-Golgi Network/metabolism , Copper-Transporting ATPases/genetics , Copper-Transporting ATPases/metabolism , Adaptor Protein Complex 1/genetics , Adaptor Protein Complex 1/metabolism , Adaptor Protein Complex gamma Subunits/metabolism
10.
BMC Ecol Evol ; 24(1): 5, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184553

ABSTRACT

BACKGROUND: The diversity and population genetic structure of many species have been shaped by historical and contemporary climatic changes. For the species of the South American Altiplano, the historical climatic changes are mainly related to the wet events of great magnitude and regional influence that occurred during the Pleistocene climatic oscillations (PCOs). In contrast, contemporary climate changes are associated with events of lesser magnitude and local influence related to intensifications of the South American Summer Monsoon (SASM). Although multiple studies have analyzed the effect of PCOs on the genetic patterns of highland aquatic species, little is known about the impact of contemporary climate changes in recent evolutionary history. Therefore, in this study, we investigated the change in population structure and connectivity using nuclear and mitochondrial markers throughout the distribution range of Heleobia ascotanensis, a freshwater Cochliopidae endemic to the Ascotán Saltpan. In addition, using geometric morphometric analyses, we evaluated the concomitance of genetic divergence and morphological differentiation. RESULTS: The mitochondrial sequence analysis results revealed the presence of highly divergent co-distributed and geographically nested haplotypes. This pattern reflects an extension in the distribution of groups that previously would have differentiated allopatrically. These changes in distribution would have covered the entire saltpan and would be associated with the large-scale wet events of the PCOs. On the other hand, the microsatellite results defined five spatially isolated populations, separated primarily by geographic barriers. Contemporary gene flow analyses suggest that post-PCO, climatic events that would have connected all populations did not occur. The morphometric analyses results indicate that there is significant morphological differentiation in the populations that are more isolated and that present the greatest genetic divergence. CONCLUSIONS: The contemporary population structure and morphological variation of H. ascotanensis mainly reflect the post-PCO climatic influence. Although both markers exhibit high genetic structuring, the microsatellite and morphology results show the preponderant influence of fragmentation in recent evolutionary history. The contemporary genetic pattern shows that in species that have limited dispersal capabilities, genetic discontinuities can appear rapidly, erasing signs of historical connectivity.


Subject(s)
Biological Evolution , Climate Change , Animals , Chile , Fresh Water , Snails
11.
Prog Neurobiol ; 234: 102575, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281682

ABSTRACT

Adaptor protein complex 4 (AP-4) is a heterotetrameric complex that promotes export of selected cargo proteins from the trans-Golgi network. Mutations in each of the AP-4 subunits cause a complicated form of Hereditary Spastic Paraplegia (HSP). Herein, we report that ApoER2, a receptor in the Reelin signaling pathway, is a cargo of the AP-4 complex. We identify the motif ISSF/Y within the ApoER2 cytosolic domain as necessary for interaction with the canonical signal-binding pocket of the µ4 (AP4M1) subunit of AP-4. AP4E1- knock-out (KO) HeLa cells and hippocampal neurons from Ap4e1-KO mice display increased co-localization of ApoER2 with Golgi markers. Furthermore, hippocampal neurons from Ap4e1-KO mice and AP4M1-KO human iPSC-derived cortical i3Neurons exhibit reduced ApoER2 protein expression. Analyses of biosynthetic transport of ApoER2 reveal differential post-Golgi trafficking of the receptor, with lower axonal distribution in KO compared to wild-type neurons, indicating a role of AP-4 and the ISSF/Y motif in the axonal localization of ApoER2. Finally, analyses of Reelin signaling in mouse hippocampal and human cortical KO neurons show that AP4 deficiency causes no changes in Reelin-dependent activation of the AKT pathway and only mild changes in Reelin-induced dendritic arborization, but reduces Reelin-induced ERK phosphorylation, CREB activation, and Golgi deployment. This work thus establishes ApoER2 as a novel cargo of the AP-4 complex, suggesting that defects in the trafficking of this receptor and in the Reelin signaling pathway could contribute to the pathogenesis of HSP caused by mutations in AP-4 subunits.


Subject(s)
Adaptor Protein Complex 4 , LDL-Receptor Related Proteins , Spastic Paraplegia, Hereditary , Animals , Humans , Mice , Adaptor Protein Complex 4/genetics , Adaptor Protein Complex 4/metabolism , HeLa Cells , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Receptors, Cell Surface , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/metabolism
12.
Plant Dis ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37933144

ABSTRACT

The European hazelnut (Corylus avellana) is an important fruit crop cultivated in Chile, with over 17,000 ha planted (46%) in the Maule region, central Chile. During a routine orchard survey in seasons 2020-2021 and 2021-2022, in the Maule region, canker and dieback symptoms were observed in two commercial orchards of European hazelnut cv. Tonda Di Giffoni in San Rafael (8-year-olds) and Linares (15-year-olds), with an incidence between 10% and 36%, respectively, based on external symptoms. Twenty symptomatic branches exhibiting cankers, reduced vigor, wilting, twig death, and dieback, were collected. A cross-section of diseased branches revealed mostly brown V or U-shaped cankers of hard consistency. Branches were cut, and pieces of cankers were surface sterilized in 96% ethanol for 3 s and briefly flamed. Small pieces of wood (5 mm2) from the edge of cankered tissues were placed on Potato Dextrose Agar (2% PDA) amended with 0.1% Igepal CO-630 and incubated at 25°C for five days in the dark (Díaz and Latorre 2014). Pure cultures were obtained by transferring a hyphal tip from growing colonies to fresh PDA media. Eight pure cultures (NP-Haz01 to NP-Haz08) developed dark to olive-brown fast-growing colonies with scarce aerial mycelium after seven days at 25°C on PDA under near-UV light. These isolates showed a dark-olive color on the reverse side of Petri dishes and developed abundant, aggregated, and dark-brown globose pycnidia after 21 days at 25°C. Conidia were hyaline, aseptate, ellipsoidal, densely granulate, externally smooth, and thin-walled dark, that measured (9.5-) 15.5 ±1.2 (-17.3) x (5.1-) 7.2 ± 0.6 (-9.1) µm (n = 30), with a length/width ratio of 2.15. These isolates were tentatively identified morphologically as Neofusicoccum sp. Molecular identification was performed using ITS1/ITS4, Bt2a/Bt2b and EF1-728F/EF1-986R primers of the internal transcribed spacer (ITS1-5.8S-ITS2) region, a portion of the beta-tubulin (BT) and part of the translation elongation factor (EF1-) genes, respectively (Dissanayake et al. 2015). A MegaBlast search in GenBank showed a 99% similarity to isolate CMW9081, the ex-type of Neofusicocum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips. The sequences were added to GenBank (OR393855 to OR393857 for ITS; OR400688 to OR400690 for BT; OR400691 to OR400693 for EF1-). Pathogenicity of three isolates (NP-Haz02, NP-Haz04, NP-Haz09) was studied on freshly made pruning wounds on attached branches of 3-year-old and one-year-old of European hazelnut cv. Tonda Di Giffoni in the San Rafael field. Fifteen pruning wounds were inoculated with 40 µL conidial suspension (105 conidia/mL) of each isolate of N. parvum. Sterile distilled water was used as a control treatment (n=15 branches) for branches of 3-year-olds and one-year-olds. Both pathogenicity tests were repeated once. Attached branches of 3-year-olds (6 months of incubation) and one-year-olds (4 months of incubation), developed necrotic streaks and cankers with a mean length of 33 to 82 mm and 25 to 51 mm, respectively. No necrotic streaks were observed in the branches treated with water. Neofusicoccum parvum was reisolated only from symptomatic tissues of inoculated branches, and morphological and molecularly (EF1-) identified, thus fulfilling Koch's postulates. Previously, other Botryosphaeriaceae spp. as Diplodia coryli (Guerrero and Pérez 2012) and D. mutila (Moya-Elizondo et al. 2023) have been obtained from canker and dieback of hazelnut in Chile. Recently, N. parvum was reported causing nut rot in hazelnuts in Italy (Wagas et al. 2022). To our knowledge, this is the first report of N. parvum causing canker and branch dieback of hazelnut trees in Chile and worldwide.

13.
Org Biomol Chem ; 21(48): 9591-9602, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38014516

ABSTRACT

Resveratrol, a polyphenolic compound known for its health benefits but limited by poor water solubility and low bioavailability, represents a valuable substrate for glucosylation by carbohydrate-active enzymes such as glucosyltransferase-SI (GTF-SI). Using quantum mechanics/molecular mechanics (QM/MM) calculations and molecular dynamics simulations, this study reveals the atomic scale dynamics of resveratrol glucosylation by wild-type GTF-SI. This enzyme exhibited an energy barrier of 8.8 kcal mol-1 and an exothermic process, both consistent with experimental data of similar enzymes. We report a concerted and synchronous reaction mechanism for the catalytic step, characterized by an oxocarbenium ion-like transition state, and elucidate a conformational itinerary of the glucosyl moiety (4H3/E3) → [E3]‡ → 4C1, which aligns with the consistent patterns observed across enzymes of the GH13 and GH70 families. A key interaction was observed between Asp477 and the OH group on carbon 6 of the glucosyl moiety, together with a 2.0 kcal mol-1 transition state stabilization by three water molecules within the active site. Comparative insights with the previously studied Q345F SP enzyme system shed light on the unique and common features that govern transglucosylation reactions. Importantly, the calculated activation barriers strongly support the capability of GTF-SI to facilitate resveratrol glucosylation. This study advances our understanding of the transglucosylation reaction and opens up new ways for the glycodiversification of organic compounds such as polyphenols, thus expanding their potential applications in the food, cosmetic, and pharmaceutical industries.


Subject(s)
Glucosyltransferases , Streptococcus mutans , Humans , Resveratrol , Glucosyltransferases/chemistry , Molecular Dynamics Simulation , Water
14.
Sci Rep ; 13(1): 17562, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37845265

ABSTRACT

We explore the data-parallel acceleration of physics-informed machine learning (PIML) schemes, with a focus on physics-informed neural networks (PINNs) for multiple graphics processing units (GPUs) architectures. In order to develop scale-robust and high-throughput PIML models for sophisticated applications which may require a large number of training points (e.g., involving complex and high-dimensional domains, non-linear operators or multi-physics), we detail a novel protocol based on h-analysis and data-parallel acceleration through the Horovod training framework. The protocol is backed by new convergence bounds for the generalization error and the train-test gap. We show that the acceleration is straightforward to implement, does not compromise training, and proves to be highly efficient and controllable, paving the way towards generic scale-robust PIML. Extensive numerical experiments with increasing complexity illustrate its robustness and consistency, offering a wide range of possibilities for real-world simulations.

15.
PeerJ Comput Sci ; 9: e1490, 2023.
Article in English | MEDLINE | ID: mdl-37705614

ABSTRACT

Alzheimer's disease (AD) is a progressive type of dementia characterized by loss of memory and other cognitive abilities, including speech. Since AD is a progressive disease, detection in the early stages is essential for the appropriate care of the patient throughout its development, going from asymptomatic to a stage known as mild cognitive impairment (MCI), and then progressing to dementia and severe dementia; is worth mentioning that everyone suffers from cognitive impairment to some degree as we age, but the relevant task here is to identify which people are most likely to develop AD. Along with cognitive tests, evaluation of the brain morphology is the primary tool for AD diagnosis, where atrophy and loss of volume of the frontotemporal lobe are common features in patients who suffer from the disease. Regarding medical imaging techniques, magnetic resonance imaging (MRI) scans are one of the methods used by specialists to assess brain morphology. Recently, with the rise of deep learning (DL) and its successful implementation in medical imaging applications, it is of growing interest in the research community to develop computer-aided diagnosis systems that can help physicians to detect this disease, especially in the early stages where macroscopic changes are not so easily identified. This article presents a DL-based approach to classifying MRI scans in the different stages of AD, using a curated set of images from Alzheimer's Disease Neuroimaging Initiative and Open Access Series of Imaging Studies databases. Our methodology involves image pre-processing using FreeSurfer, spatial data-augmentation operations, such as rotation, flip, and random zoom during training, and state-of-the-art 3D convolutional neural networks such as EfficientNet, DenseNet, and a custom siamese network, as well as the relatively new approach of vision transformer architecture. With this approach, the best detection percentage among all four architectures was around 89% for AD vs. Control, 80% for Late MCI vs. Control, 66% for MCI vs. Control, and 67% for Early MCI vs. Control.

17.
Plant Dis ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37702786

ABSTRACT

During the harvest of 2020 and 2021, sweet cherry (Prunus avium) fruit showed a firm rot with irregular pale to dark brown lesions on the fruit surface, with green to light brown fungal growth resembling Alternaria-like infection (Simmons, 2007). Diseased cherries (n= 80 fruit) were collected at harvest in mature (over 10-year-old) commercial orchards of cherry tree varieties Lapins, Regina, Santina, Skeena, and Sweetheart planted in four localities of the regions O´Higgins (33°59´ S, 70°42´W; San Francisco de Mostazal and Graneros) and Maule (35°00'S, 71°23´W; Curicó and Sagrada Familia), Central Chile. The incidence of black rot was 1.9 and 3.2% in O´Higgins and Maule region, respectively, and it was increased to up to 5% during cold storage. The fruit collected previously, were transported to the lab, and surface disinfected in 75% ethanol for 15 s, and rinsed in sterile water. Internal pieces from the junction of diseased and healthy tissues of fruits were placed on potato dextrose agar (PDA, 2%) for 7 days at 20°C. Forty-two isolates of Alternaria-like (Simmons, 2007) were recovered consistently from pure cultures taking hyphal tips from 7 days old cultures. On PDA, 28 isolates (group A) were characterized by cottony, white-gray to green colonies and conidial chains (4 to 10 conidia) with secondary chains (1 to 5 conidia) branching on the conidiophore. Conidia were ovate to obclavate (mean 22.8 ± 5.1 x 8.8 ± 1.5 µm; n=40) with 3 to 7 transepta and 1 longisepta. The remaining 14 isolates (group B) were characterized by cottony, olive-green to olive-brown colonies following a ring pattern of growth and white margins, with conidial chains (4 to 14 conidia) and uncommon secondary chains (1 to 4 conidia). Conidia were obpyriform to ovate, light brown to brown with a cylindrical short beak at the tip (mean 24.7 ± 5.9 × 11.2 ± 1.3 µm; n=40) with 2 to 4 transepta, and 0 to 2 longisepta. Two representative isolates of group A (Sant-02-2020 and Bing-03-2020) and group B (Sant-26-2021 and Skeen-43-2021) were amplified for the Alternaria major allergen (Alt a1), plasma membrane ATPase (ATP), and calmodulin (Cal) loci following the protocols described by Hong et al. (2005) and Lawrence et al. (2013). A MegaBlast search of sequences of group A (GenBank nos. OR267293- OR267294, OR258001- OR258002, and OR267297- OR267298, for Alt a1, ATP, and Cal, respectively) showed 100% similarity to strains UCD10529 and UCD10539 of A. alternata, and group B (GenBank nos. OR267295- OR267296, OR258003- OR258004, and OR258005- OR258006, for Alt a1, ATP, and Cal, respectively) showed 100% similarity to strains EGS 34-015 and A30 of A. tenuissima. Combined phylogenetic analysis using MEGA X clustered isolates Sant-02-2020 and Bing-03-2020, and Sant-26-2021 and Skeen-43-2021 with ex-type of A. alternata and A. tenuissima, respectively. Pathogenicity tests were conducted using isolates of A. alternata (Sant-02-2020; Bing-03-2020) and A. tenuissima (Sant-26-2021; Skeen-43-2021). Detached ripe cherry fruit var. Sweetheart (n=40 fruits/isolate) and Regina (n=40 fruits/isolate) were surfaces disinfested (75% ethanol, 30 s), wounded in the middle with a sterile needle (2 mm in depth), and inoculated with 20 µL of conidial suspension (106 conidia/mL). An equal number of healthy cherries (n=40 fruits) treated with sterile water were used as controls. The experiment was repeated once. All inoculated fruit incubated for 7 days at 22°C, developed between 13 ± 2.7 to 23 ± 2.5 mm and 14.1 ± 1.1 to 19 ± 3.6 mm in lesion diameter for A. alternata and A. tenuissima isolates, respectively. Koch´s postulates were fulfilled by 100% reisolation of the causal pathogen from inoculated fruit, and molecular identification of A. alternata and A. tenuissima isolates. Previously, A. alternata has been described as causing rots on cherries in Chile (Acuña 2010), and China (Zhao and Liu, 2012; Ahmad et al., 2020). To our knowledge, this is the first occurrence of cherry black rot caused by A. alternata and A. tenuissima in Central Chile. Epidemiological studies are necessary to develop integrated management of cherry black rot in Central Chile.

18.
Article in English | MEDLINE | ID: mdl-37732873

ABSTRACT

BACKGROUND AND OBJECTIVE: Allergic conjunctivitis is the most common type of ocular allergy. The objective of this study was to evaluate the efficacy of a new once-daily, preservative-free, bilastine 0.6% eye drop formulation for the treatment of allergic conjunctivitis. METHODS: Two double-masked, vehicle controlled, clinical studies (a Phase 2 Dose Ranging Study and a Phase 3 Efficacy Study) were conducted to assess the efficacy of bilastine ophthalmic solution for the treatment of signs and symptoms of allergic conjunctivitis. Both studies used the Ora-CAC® Conjunctival Allergen Challenge (CAC) Model to allow observations of allergic responses under controlled conditions. Each study was analyzed separately and then combined to create an integrated dataset. RESULTS: Efficacy was achieved for the primary efficacy endpoint of ocular itching for three bilastine concentrations (0.2%, 0.4%, and 0.6%) at 15 minutes and 8 hours post-instillation and bilastine 0.6% ophthalmic solution was also efficacious at 16 hours post-instillation. Bilastine 0.6% ophthalmic solution demonstrated non-inferiority to ketotifen 0.025% at the onset of action. From the integrated data set, differences between vehicle and bilastine 0.6% were significant at all time points both at onset (15 minutes) and at a prolonged duration (16 hours) after instillation. CONCLUSION: This multi-trial assessment suggests that bilastine 0.6% ophthalmic solution is efficacious for the treatment of the signs and symptoms of allergic conjunctivitis, with a rapid and prolonged duration of action, and has a favorable safety profile. The added convenience of a once-a-day dosing regimen may contribute to patient adherence and improve their quality of life.

19.
Dev Comp Immunol ; 149: 105056, 2023 12.
Article in English | MEDLINE | ID: mdl-37730191

ABSTRACT

High-Mobility Group (HMG) proteins are involved in different processes such as transcription, replication, DNA repair, and immune response. The role of HMG proteins in the immune response of fish has been studied mainly for HMGB1, where its expression can be induced by the stimulation of viral/bacterial PAMPs and can act as a proinflammatory mediator and as a global regulator of transcription in response to temperature. However, for BbX this role remains to be discovered. In this work, we identified the BbX of E. maclovinus and evaluated the temporal expression levels after simultaneous challenge with P. salmonis and thermal stress. Phylogenetic analysis does not significantly deviate from the expected organismal relationships suggesting orthologous relationships and that BbX was present in the common ancestor of the group. BbX mRNA expression levels were very high in the intestinal tissue of E. maclovinus (foregut, midgut, and hindgut). Nevertheless, the protein levels analyzed by WB showed the highest levels of BbX protein in the liver (constitutive expression). On the other hand, the mRNA expression levels of BbX in the liver of E. maclovinus injected with P. salmonis and subjected to thermal stress showed an increase at days 16 and 20 in all treatments applied at 12 °C and 18 °C. Meanwhile, the protein levels quantified by WB showed a statistically significant increase in the HMG-Bbx at all experimental times (4, 8, 12, 16, and 20 dpi). However, at 4 dpi the HMG-Bbx protein levels were much higher than the other days evaluated. The results suggest that BbX protein may be implicated in the response mechanism to temperature and bacterial stimulation in the foregut, midgut, hindgut, and liver, according to our findings at the level of mRNA and protein. Furthermore, our WB analysis suggests an effect of P. salmonis on the expression of this protein that can be observed in condition C+ 12 °C compared to C- 12 °C. Then, there is an effect of temperature that can be evidenced in the condition AM 18 °C and SM 18 °C, compared to AB 18 °C and SB 18 °C at 4, 8, and 12 dpi. We found not differences in the levels of this protein if the thermal stress is achieved through acclimatization or shock. More research is necessary to clarify the importance of this type of HMG in the immune response and thermal tolerance in fish.


Subject(s)
Perciformes , Transcription Factors , Animals , Phylogeny , Gene Expression Regulation , Fishes , RNA, Messenger
SELECTION OF CITATIONS
SEARCH DETAIL
...