Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 12(22): 5344-5348, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34076446

ABSTRACT

We report on large-scale simulations of intrachain exciton dynamics in poly(para-phenylenevinylene). Our theoretical model describes Frenkel exciton coupling to both fast, quantized C-C bond vibrations and slow, classical torsional modes. We also incorporate system-bath interactions. The dynamics is simulated using the time evolution block decimation method, which avoids the failures of the Ehrenfest approximation to describe decoherence processes and nonadiabatic interstate conversion. System-bath interactions are modeled using quantum trajectories and Lindblad quantum jump operators. We find that following photoexcitation, the quantum mechanical entanglement of the exciton and C-C bond phonons causes exciton-site decoherence. Next, system-bath interactions cause the stochastic collapse of high-energy delocalized excitons into chromophores. Finally, torsional relaxation causes additional exciton-density localization. We relate these dynamical processes to the predicted fluorescence depolarization, extract the time scales corresponding to them, and thus interpret the observed sub-ps fluorescence depolarization.

SELECTION OF CITATIONS
SEARCH DETAIL
...