Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Cell Biol ; 26(23): 8953-63, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17000765

ABSTRACT

Ral GTPase activity is a crucial cell-autonomous factor supporting tumor initiation and progression. To decipher pathways impacted by Ral, we have generated null and hypomorph alleles of the Drosophila melanogaster Ral gene. Ral null animals were not viable. Reduced Ral expression in cells of the sensory organ lineage had no effect on cell division but led to postmitotic cell-specific apoptosis. Genetic epistasis and immunofluorescence in differentiating sensory organs suggested that Ral activity suppresses c-Jun N-terminal kinase (JNK) activation and induces p38 mitogen-activated protein (MAP) kinase activation. HPK1/GCK-like kinase (HGK), a MAP kinase kinase kinase kinase that can drive JNK activation, was found as an exocyst-associated protein in vivo. The exocyst is a Ral effector, and the epistasis between mutants of Ral and of msn, the fly ortholog of HGK, suggest the functional relevance of an exocyst/HGK interaction. Genetic analysis also showed that the exocyst is required for the execution of Ral function in apoptosis. We conclude that in Drosophila Ral counters apoptotic programs to support cell fate determination by acting as a negative regulator of JNK activity and a positive activator of p38 MAP kinase. We propose that the exocyst complex is Ral executioner in the JNK pathway and that a cascade from Ral to the exocyst to HGK would be a molecular basis of Ral action on JNK.


Subject(s)
Apoptosis , Drosophila melanogaster/cytology , Drosophila melanogaster/embryology , GTP-Binding Proteins/metabolism , Mitogen-Activated Protein Kinase 9/metabolism , Alleles , Animals , Cell Differentiation , Cell Lineage , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Embryo, Nonmammalian , Enzyme Activation , Epistasis, Genetic , GTP-Binding Proteins/genetics , Gene Deletion , Gene Expression Regulation, Developmental , Genes, Essential , Genes, Insect , Immunohistochemistry , MAP Kinase Kinase 4/metabolism , Microscopy, Video , Protein Serine-Threonine Kinases/metabolism , Sense Organs/embryology , Sense Organs/growth & development , p38 Mitogen-Activated Protein Kinases/metabolism
2.
Mech Dev ; 110(1-2): 71-83, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11744370

ABSTRACT

The recent determination and annotation of the entire euchromatic sequence of the Drosophila melanogaster genome predicted the existence of about 13600 different genes (Science 287 (2000) 2185; http://www.fruitfly.org/annot/index.html). In parallel, the Berkeley Drosophila Genome Project (BDGP) has undertaken systematic P-insertion screens, to isolate new lethals and misexpressing lines. To date, however, the genes of the X chromosome have been under-represented in the screens performed. In order both to characterize several X-linked genes of prime interest to our laboratories and contribute to the collection of lethal P-insertions available to the community, we performed a P-insertion mutagenesis of the X chromosome. Using the PlacW and PGawB P-elements as mutagens, we generated two complementary sets of enhancer-trap lines, l(1)(T)PL and l(1)(T)PG, respectively, which both contain a reporter gene whose developmental expression can be monitored when driven by nearby enhancer sequences. We report here the characterization of 260 new insertions, mapping to 133 different genes or predicted CGs. Of these, 83 correspond to genes for which no lethal mutation had yet been reported. For 64 of those, we could confirm that lethality was solely due to the P-element insertion. The primary molecular data, reporter gene expression patterns (observed in embryos, third instar larvae and adult ovaries) and proposed CG assignment for each strain can be accessed and updated on our website at the following address: http://www-cbd.ups-tlse.fr:8080/screen.


Subject(s)
Drosophila melanogaster/genetics , Genes, Insect , Animals , Animals, Genetically Modified , Crosses, Genetic , Drosophila melanogaster/embryology , Enhancer Elements, Genetic , Female , Gene Expression Regulation, Developmental , Genes, Lethal , Genes, Reporter , Genetic Linkage , Lac Operon , Male , Mutagenesis, Insertional , X Chromosome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL