Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 12(1): e0335323, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38084969

ABSTRACT

IMPORTANCE: The mechanisms used by various bacteria to determine whether their density is sufficient to meet the QS threshold, how stringently bacterial cells block QS initiation until the QS threshold is reached, and the impacts of low-density bacterial cells encountering conditions that exceed the QS threshold are longstanding gaps in QS research. We demonstrated that translational control of the QS signaling biosynthetic gene creates a stringent QS threshold to maintain metabolic balance at low cell densities. The emergence of non-cooperative cells underlines the critical role of stringent QS modulation in maintaining the integrity of the bacterial QS system, demonstrating that a lack of such control can serve as a selection pressure. The fate of quorum-calling cells exposed to exceeding the QS threshold clarifies QS bacteria evolution in complex ecosystems.


Subject(s)
Ecosystem , Quorum Sensing , Bacteria/genetics , Bacteria/metabolism , Homeostasis , Signal Transduction , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
Front Microbiol ; 13: 950600, 2022.
Article in English | MEDLINE | ID: mdl-35910611

ABSTRACT

Bacteria often change their genetic and physiological traits to survive in harsh environments. To determine whether, in various strains of Burkholderia glumae, genomic diversity is associated with the ability to adapt to ever-changing environments, whole genomes of 44 isolates from different hosts and regions were analyzed. Whole-genome phylogenetic analysis of the 44 isolates revealed six clusters and two divisions. While all isolates possessed chromosomes 1 and 2, strains BGR80S and BGR81S had one chromosome resulting from the merging of the two chromosomes. Upon comparison of genomic structures to the prototype BGR1, inversions, deletions, and rearrangements were found within or between chromosomes 1 and/or 2 in the other isolates. When three isolates-BGR80S, BGR15S, and BGR21S, representing clusters III, IV, and VI, respectively-were grown in Luria-Bertani medium, spontaneous null mutations were identified in qsmR encoding a quorum-sensing master regulator. Six days after subculture, qsmR mutants were found at detectable frequencies in BGR15S and BGR21S, and reached approximately 40% at 8 days after subculture. However, the qsmR mutants appeared 2 days after subculture in BGR80S and dominated the population, reaching almost 80%. No qsmR mutant was detected at detectable frequency in BGR1 or BGR13S. The spontaneous qsmR mutants outcompeted their parental strains in the co-culture. Daily addition of glucose or casamino acids to the batch cultures of BGR80S delayed emergence of qsmR mutants and significantly reduced their incidence. These results indicate that spontaneous qsmR mutations are correlated with genomic structures and nutritional conditions.

3.
Mol Plant Pathol ; 23(10): 1461-1471, 2022 10.
Article in English | MEDLINE | ID: mdl-35717678

ABSTRACT

Expression of type III secretion system (T3SS) genes, which are important for the virulence of phytopathogenic bacteria, is induced in the plant apoplastic environment or artificially amended growth conditions. Wild-type Burkholderia glumae BGR1, which causes rice panicle blight, induced a hypersensitive response (HR) in tobacco plants, whereas the T3SS genes were not significantly expressed in the commonly used hrp induction medium. T3SS gene expression in B. glumae was dependent on HrpB, a well known T3SS gene transcriptional regulator. Here, we report a stepwise mechanism of T3SS gene regulation by the GluR response regulator and Lon protease in addition to HrpB-mediated control of T3SS genes in B. glumae. The gluR mutant showed no HR in tobacco plants and exhibited attenuated virulence in rice plants. GluR directly activated hrpB expression, indicating that hrpB belongs to the GluR regulon. The lon mutation allowed high expression of the T3SS genes in nutrient-rich media. Lon directly activated gluR expression but repressed hrpB expression, indicating that Lon acts as a regulator rather than a protease. However, the lon mutant failed to induce an HR and virulence, suggesting that Lon not only acts as a negative regulator, but also has an essential, yet to be determined role for T3SS. Our results demonstrate the involvement of the two-component system response regulator GluR and Lon in T3SS gene regulation, providing new insight into the complex interplay mechanisms of regulators involved in T3SS gene expression in bacteria-plant interactions.


Subject(s)
Burkholderia , Oryza , Protease La , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Burkholderia/metabolism , Gene Expression Regulation, Bacterial , Oryza/microbiology , Protease La/genetics , Protease La/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
4.
Front Microbiol ; 12: 755596, 2021.
Article in English | MEDLINE | ID: mdl-34712216

ABSTRACT

The rice pathogen Burkholderia glumae uses amino acids as a principal carbon source and thus produces ammonia in amino acid-rich culture medium such as Luria-Bertani (LB) broth. To counteract ammonia-mediated environmental alkaline toxicity, the bacterium produces a public good, oxalate, in a quorum sensing (QS)-dependent manner. QS mutants of B. glumae experience alkaline toxicity and may undergo cell death at the stationary phase when grown in LB medium. Here, we show that the cell-death processes of QS mutants due to alkaline environmental conditions are similar to the apoptosis-like cell death reported in other bacteria. Staining QS mutants with bis-(1,3-dibutylbarbituric acid)-trimethine oxonol revealed membrane depolarization. CellROX™ staining showed excessive generation of reactive oxygen species (ROS) in QS mutants. The expression of genes encoding HNH endonuclease (BGLU_1G15690), oligoribonuclease (BGLU_1G09120), ribonuclease E (BGLU_1G09400), and Hu-beta (BGLU_1G13530) was significantly elevated in QS mutants compared to that in wild-type BGR1, consistent with the degradation of cellular materials as observed under transmission electron microscopy (TEM). A homeostatic neutral pH was not attainable by QS mutants grown in LB broth or by wild-type BGR1 grown in an artificially amended alkaline environment. At an artificially adjusted alkaline pH, wild-type BGR1 underwent apoptosis-like cell death similar to that observed in QS mutants. These results show that environmental alkaline stress interferes with homeostatic neutral cellular pH, induces membrane depolarization, and causes apoptosis-like cell death in B. glumae.

5.
PLoS One ; 16(9): e0257257, 2021.
Article in English | MEDLINE | ID: mdl-34525127

ABSTRACT

The highly conserved ATP-dependent Lon protease plays important roles in diverse biological processes. The lon gene is usually nonessential for viability; however, lon mutants of several bacterial species, although viable, exhibit cellular defects. Here, we show that a lack of Lon protease causes pleiotropic effects in the rice pathogen Burkholderia glumae. The null mutation of lon produced three colony types, big (BLONB), normal (BLONN), and small (BLONS), in Luria-Bertani (LB) medium. Colonies of the BLONB and BLONN types were re-segregated upon subculture, while those of the BLONS type were too small to manipulate. The BLONN type was chosen for further studies, as only this type was fully genetically complemented. BLONN-type cells did not reach the maximum growth capacity, and their population decreased drastically after the stationary phase in LB medium. BLONN-type cells were defective in the biosynthesis of quorum sensing (QS) signals and exhibited reduced oxalate biosynthetic activity, causing environmental alkaline toxicity and population collapse. Addition of excessive N-octanoyl-homoserine lactone (C8-HSL) to BLONN-type cell cultures did not fully restore oxalate biosynthesis, suggesting that the decrease in oxalate biosynthesis in BLONN-type cells was not due to insufficient C8-HSL. Co-expression of lon and tofR in Escherichia coli suggested that Lon negatively affects the TofR level in a C8-HSL-dependent manner. Lon protease interacted with the oxalate biosynthetic enzymes, ObcA and ObcB, indicating potential roles for the oxalate biosynthetic activity. These results suggest that Lon protease influences colony morphology, growth, QS system, and oxalate biosynthesis in B. glumae.


Subject(s)
Burkholderia/genetics , Gene Expression Regulation, Bacterial , Mutation , Oryza/microbiology , Protease La/physiology , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/metabolism , Bacterial Proteins/genetics , Chromatography, Thin Layer , Escherichia coli , Escherichia coli Proteins/genetics , Oxalates/metabolism , Phenotype , Protease La/genetics , Protease La/metabolism , Quorum Sensing
6.
Front Microbiol ; 12: 721444, 2021.
Article in English | MEDLINE | ID: mdl-34381438

ABSTRACT

Bacteria have specific signaling systems to overcome selective pressure, such as exposure to antibiotics. The two-component system (TCS) plays an important role in the development of antibiotic resistance. Using the rice pathogen Burkholderia glumae BGR1 as a model organism, we showed that the GluS (BGLU_1G13350) - GluR (BGLU_1G13360) TCS, consisting of a sensor kinase and response regulator, respectively, contributes to ß-lactam resistance through a distinct mechanism. Inactivation of gluS or gluR conferred resistance to ß-lactam antibiotics in B. glumae, whereas wild-type (WT) B. glumae was susceptible to these antibiotics. In gluS and gluR mutants, the expression of genes encoding metallo-ß-lactamases (MBLs) and penicillin-binding proteins (PBPs) was significantly higher than in the WT. GluR-His bound to the putative promoter regions of annotated genes encoding MBL (BGLU_1G21360) and PBPs (BGLU_1G13280 and BGLU_1G04560), functioning as a repressor. These results demonstrate that the potential to attain ß-lactam resistance may be genetically concealed in the TCS, in contrast to the widely accepted view of the role of TCS in antibiotic resistance. Our findings provide a new perspective on antibiotic resistance mechanisms, and suggest a different therapeutic approach for successful control of bacterial pathogens.

7.
Front Microbiol ; 12: 700333, 2021.
Article in English | MEDLINE | ID: mdl-34276634

ABSTRACT

Bacterial two-component regulatory systems control the expression of sets of genes to coordinate physiological functions in response to environmental cues. Here, we report a genetically linked but functionally unpaired two-component system (TCS) comprising the sensor kinase GluS (BGLU_1G13350) and the response regulator GluR (BGLU_1G13360), which is critical for cell division in the rice pathogen Burkholderia glumae BGR1. The gluR null mutant, unlike the gluS mutant, formed filamentous cells in Lysogeny Broth medium and was sensitive to exposure to 42°C. Expression of genes responsible for cell division and cell-wall (dcw) biosynthesis in the gluR mutant was elevated at transcription levels compared with the wild type. GluR-His bound to the putative promoter regions of ftsA and ftsZ is involved in septum formation, indicating that repression of genes in the dcw cluster by GluR is critical for cell division in B. glumae. The gluR mutant did not form filamentous cells in M9 minimal medium, whereas exogenous addition of glutamine or glutamate to the medium induced filamentous cell formation. These results indicate that glutamine and glutamate influence GluR-mediated cell division in B. glumae, suggesting that GluR controls cell division of B. glumae in a nutrition-dependent manner. These findings provide insight into how the recognition of external signals by TCS affects the sophisticated molecular mechanisms involved in controlling bacterial cell division.

8.
PLoS One ; 15(8): e0238151, 2020.
Article in English | MEDLINE | ID: mdl-32833990

ABSTRACT

Bacteria often possess relatively flexible genome structures and adaptive genetic variants that allow survival in unfavorable growth conditions. Bacterial survival tactics in disadvantageous microenvironments include mutations that are beneficial against threats in their niche. Here, we report that the aerobic rice bacterial pathogen Burkholderia glumae BGR1 changes a specific gene for improved survival in static culture conditions. Static culture triggered formation of colony variants with deletions or point mutations in the gene bspP (BGLU_RS28885), which putatively encodes a protein that contains PDC2, PAS-9, SpoIIE, and HATPase domains. The null mutant of bspP survived longer in static culture conditions and produced a higher level of bis-(3'-5')-cyclic dimeric guanosine monophosphate than the wild type. Expression of the bacterial cellulose synthase regulator (bcsB) gene was upregulated in the mutant, consistent with the observation that the mutant formed pellicles faster than the wild type. Mature pellicle formation was observed in the bspP mutant before pellicle formation in wild-type BGR1. However, the population density of the bspP null mutant decreased substantially when grown in Luria-Bertani medium with vigorous agitation due to failure of oxalate-mediated detoxification of the alkaline environment. The bspP null mutant was less virulent and exhibited less effective colonization of rice plants than the wild type. All phenotypes caused by mutations in bspP were recovered to those of the wild type by genetic complementation. Thus, although wild-type B. glumae BGR1 prolonged viability by spontaneous mutation under static culture conditions, such genetic changes negatively affected colonization in rice plants. These results suggest that adaptive gene sacrifice of B. glumae to survive unfavorable growth conditions is not always desirable as it can adversely affect adaptability in the host.


Subject(s)
Adaptation, Biological/genetics , Burkholderia/genetics , Burkholderia/metabolism , Burkholderia/pathogenicity , Gene Expression Regulation, Bacterial/genetics , Genome, Bacterial/genetics , Genomics/methods , Mutation , Oryza/microbiology , Plant Diseases/microbiology , Quorum Sensing/genetics , Virulence/genetics
9.
Sci Rep ; 9(1): 11038, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31363118

ABSTRACT

The activated methyl cycle (AMC) is responsible for the generation of S-adenosylmethionine (SAM), which is a substrate of N-acylhomoserine lactone (AHL) synthases. However, it is unknown whether AHL-mediated quorum sensing (QS) plays a role in the metabolic flux of the AMC to ensure cell density-dependent biosynthesis of AHL in cooperative populations. Here we show that QS controls metabolic homeostasis of the AMC critical for AHL biosynthesis and cellular methylation in Burkholderia glumae, the causal agent of rice panicle blight. Activation of genes encoding SAM-dependent methyltransferases, S-adenosylhomocysteine (SAH) hydrolase, and methionine synthases involved in the AMC by QS is essential for maintaining the optimal concentrations of methionine, SAM, and SAH required for bacterial cooperativity as cell density increases. Thus, the absence of QS perturbed metabolic homeostasis of the AMC and caused pleiotropic phenotypes in B. glumae. A null mutation in the SAH hydrolase gene negatively affected AHL and ATP biosynthesis and the activity of SAM-dependent methyltransferases including ToxA, which is responsible for the biosynthesis of a key virulence factor toxoflavin in B. glumae. These results indicate that QS controls metabolic flux of the AMC to secure the biosynthesis of AHL and cellular methylation in a cooperative population.


Subject(s)
Bacterial Proteins/metabolism , Burkholderia/metabolism , Homeostasis , Methyltransferases/metabolism , Quorum Sensing , S-Adenosylmethionine/metabolism , Adenosylhomocysteinase/genetics , Adenosylhomocysteinase/metabolism , Bacterial Proteins/genetics , Burkholderia/physiology , Ligases/genetics , Ligases/metabolism , Methylation , Methyltransferases/genetics , Mutation , S-Adenosylhomocysteine/metabolism
10.
Front Microbiol ; 10: 3090, 2019.
Article in English | MEDLINE | ID: mdl-32010117

ABSTRACT

Bacteria form biofilms as a means to adapt to environmental changes for survival. Pellicle is a floating biofilm formed at the air-liquid interface in static culture conditions; however, its functional roles have received relatively little attention compared to solid surface-associated biofilms in gram-negative bacteria. Here we show that the rice pathogen Burkholderia glumae BGR1 forms cellulase-sensitive pellicles in a bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP)- and flagellum-dependent, but quorum sensing (QS)-independent, manner. Pellicle formation was more favorable at 28°C than at the optimum growth temperature (37°C), and was facilitated by constitutive expression of pelI, a diguanylate cyclase gene from B. glumae, or pleD, the GGDEF response regulator from Agrobacterium tumefaciens. Constitutive expression of pelI or pleD raised the levels of c-di-GMP, facilitated pellicle formation, and suppressed swarming motility in B. glumae. QS-defective mutants of B. glumae formed pellicles, while flagellum-defective mutants did not. Pellicles of B. glumae were sensitive to cellulase but not to proteinase K or DNase I. A gene cluster containing seven genes involved in bacterial cellulose biosynthesis, bcsD, bcsR, bcsQ, bcsA, bcsB, bcsZ, and bcsC, homologous to known genes involved in cellulose biosynthesis in other bacteria, was identified in B. glumae. Mutations in each gene abolished pellicle formation. These results revealed a positive correlation between cellulase-sensitive pellicles and putative cellulose biosynthetic genes. Pellicle-defective mutants did not colonize as successfully as the wild-type strain BGR1 in rice plants, which resulted in a significant reduction in virulence. Our findings show that cellulase-sensitive pellicles produced in a QS-independent manner play important roles in the interactions between rice plants and B. glumae.

11.
Sci Rep ; 7: 44195, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28272446

ABSTRACT

Metabolic homeostasis in cooperative bacteria is achieved by modulating primary metabolism in a quorum sensing (QS)-dependent manner. A perturbed metabolism in QS mutants causes physiological stress in the rice bacterial pathogen Burkholderia glumae. Here, we show that increased bacterial osmolality in B. glumae is caused by unusually high cellular concentrations of glutamate and betaine generated by QS deficiencies. QS negatively controls glutamate uptake and the expression of genes involved in the glutamine synthetase and glutamine oxoglutarate aminotransferase cycles. Thus, cellular glutamate levels were significantly higher in the QS mutants than in the wild type, and they caused hyperosmotic cellular conditions. Under the hypotonic conditions of the periplasm in the QS mutants, outer membrane bulging and vesiculation were observed, although these changes were rescued by knocking out the gltI gene, which encodes a glutamate transporter. Outer membrane modifications were not detected in the wild type. These results suggest that QS-dependent glutamate metabolism is critical for homeostatic osmolality. We suggest that outer membrane bulging and vesiculation might be the outcome of a physiological adaptation to relieve hypotonic osmotic stress in QS mutants. Our findings reveal how QS functions to maintain bacterial osmolality in a cooperative population.


Subject(s)
Burkholderia/metabolism , Cell Membrane/metabolism , Glutamic Acid/metabolism , Quorum Sensing/physiology , Burkholderia/genetics , Cell Membrane/genetics , Glutamic Acid/genetics , Osmolar Concentration
12.
mBio ; 8(1)2017 02 28.
Article in English | MEDLINE | ID: mdl-28246357

ABSTRACT

Quorum sensing (QS) controls cooperative activities in many Proteobacteria In some species, QS-dependent specific metabolism contributes to the stability of the cooperation. However, the mechanism by which QS and metabolic networks have coevolved to support stable public good cooperation and maintenance of the cooperative group remains unknown. Here we explored the underlying mechanisms of QS-controlled central metabolism in the evolutionary aspects of cooperation. In Burkholderia glumae, the QS-dependent glyoxylate cycle plays an important role in cooperativity. A bifunctional QS-dependent transcriptional regulator, QsmR, rewired central metabolism to utilize the glyoxylate cycle rather than the tricarboxylic acid cycle. Defects in the glyoxylate cycle caused metabolic imbalance and triggered high expression of the stress-responsive chaperonin GroEL. High-level expression of GroEL in glyoxylate cycle mutants interfered with the biosynthesis of a public resource, oxalate, by physically interrupting the oxalate biosynthetic enzyme ObcA. Under such destabilized cooperativity conditions, spontaneous mutations in the qsmR gene in glyoxylate cycle mutants occurred to relieve metabolic stresses, but these mutants lost QsmR-mediated pleiotropy. Overcoming the metabolic restrictions imposed on the population of cooperators among glyoxylate cycle mutants resulted in the occurrence and selection of spontaneous qsmR mutants despite the loss of other important functions. These results provide insight into how QS bacteria have evolved to maintain stable cooperation via QS-mediated metabolic coordination.IMPORTANCE We address how quorum sensing (QS) has coevolved with metabolic networks to maintain bacterial sociality. We found that QS-mediated metabolic rewiring is critical for sustainable bacterial cooperation in Burkholderia glumae The loss of the glyoxylate cycle triggered the expression of the stress-responsive molecular chaperonin GroEL. Excessive biosynthesis of GroEL physically hampered biosynthesis of a public good, oxalate. This is one good example of how molecular chaperones play critical roles in bacterial cooperation. In addition, we showed that metabolic restrictions in the glyoxylate cycle acted as a selection pressure on metabolic networks; there were spontaneous mutations in the qsmR gene to relieve such stresses. However, the presence of spontaneous qsmR mutants had tragic consequences for a cooperative population of B. glumae due to failure of qsmR-dependent activation of public good biosynthesis. These results provide a good example of a bacterial strategy for robust cooperation via QS-mediated metabolic rewiring.


Subject(s)
Burkholderia/physiology , Gene Expression Regulation, Bacterial , Glyoxylates/metabolism , Metabolic Networks and Pathways/genetics , Quorum Sensing , Biological Evolution , Burkholderia/growth & development , Burkholderia/metabolism , Gene Regulatory Networks
13.
Trends Microbiol ; 23(9): 567-76, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26072043

ABSTRACT

Bacterial quorum sensing (QS)-dependent gene expression is a dynamic response to cell density. Bacteria produce costly public goods for the benefit of the population as a whole. As an example, QS rewires cellular metabolism to produce oxalate (a public good) to enable survival during the stationary phase in Burkholderia glumae, Burkholderia thailandensis, and Burkholderia pseudomallei. Recent reports showed that QS serves as a metabolic brake to maintain homeostatic primary metabolism in B. glumae and readjusts the central metabolism of Pseudomonas aeruginosa. In this review, we emphasize the dynamics and complexity of the control of gene expression by QS and discuss the metabolic costs and possible metabolic options to sustain cooperativity. We then focus on how QS influences bacterial central metabolism.


Subject(s)
Bacterial Proteins/metabolism , Burkholderia/metabolism , Pseudomonas aeruginosa/metabolism , Quorum Sensing , Bacterial Proteins/genetics , Burkholderia/genetics , Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/metabolism , Gene Expression Regulation, Bacterial , Metabolome/genetics , Mutation , Pseudomonas aeruginosa/genetics , Quorum Sensing/genetics
14.
Proc Natl Acad Sci U S A ; 111(41): 14912-7, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25267613

ABSTRACT

Acyl-homoserine lactone (AHL)-mediated quorum sensing (QS) controls the production of numerous intra- and extracellular products across many species of Proteobacteria. Although these cooperative activities are often costly at an individual level, they provide significant benefits to the group. Other potential roles for QS include the restriction of nutrient acquisition and maintenance of metabolic homeostasis of individual cells in a crowded but cooperative population. Under crowded conditions, QS may function to modulate and coordinate nutrient utilization and the homeostatic primary metabolism of individual cells. Here, we show that QS down-regulates glucose uptake, substrate level and oxidative phosphorylation, and de novo nucleotide biosynthesis via the activity of the QS-dependent transcriptional regulator QsmR (quorum sensing master regulator R) in the rice pathogen Burkholderia glumae. Systematic analysis of glucose uptake and core primary metabolite levels showed that QS deficiency perturbed nutrient acquisition, and energy and nucleotide metabolism, of individuals within the group. The QS mutants grew more rapidly than the wild type at the early exponential stage and outcompeted wild-type cells in coculture. Metabolic slowing of individuals in a QS-dependent manner indicates that QS acts as a metabolic brake on individuals when cells begin to mass, implying a mechanism by which AHL-mediated QS might have evolved to ensure homeostasis of the primary metabolism of individuals under crowded conditions.


Subject(s)
Burkholderia/metabolism , Quorum Sensing , Burkholderia/growth & development , Carbon/metabolism , Down-Regulation , Glucose/metabolism , Mutation , Nucleotides/biosynthesis , Oxidative Phosphorylation , Pentose Phosphate Pathway
15.
J Biol Chem ; 289(16): 11465-11475, 2014 Apr 18.
Article in English | MEDLINE | ID: mdl-24616091

ABSTRACT

The Burkholderia species utilize acetyl-CoA and oxaloacetate, substrates for citrate synthase in the TCA cycle, to produce oxalic acid in response to bacterial cell to cell communication, called quorum sensing. Quorum sensing-mediated oxalogenesis via a sequential reaction by ObcA and ObcB counteracts the population-collapsing alkaline pH of the stationary growth phase. Thus, the oxalic acid produced plays an essential role as an excreted public good for survival of the group. Here, we report structural and functional analyses of ObcA, revealing mechanistic features distinct from those of citrate synthase. ObcA exhibits a unique fold, in which a (ß/α)8-barrel fold is located in the C-domain with the N-domain inserted into a loop following α1 in the barrel fold. Structural analyses of the complexes with oxaloacetate and with a bisubstrate adduct indicate that each of the oxaloacetate and acetyl-CoA substrates is bound to an independent site near the metal coordination shell in the barrel fold. In catalysis, oxaloacetate serves as a nucleophile by forming an enolate intermediate mediated by Tyr(322) as a general base, which then attacks the thioester carbonyl carbon of acetyl-CoA to yield a tetrahedral adduct between the two substrates. Therefore, ObcA catalyzes its reaction by combining the enolase and acetyltransferase superfamilies, but the presence of the metal coordination shell and the absence of general acid(s) produces an unusual tetrahedral CoA adduct as a stable product. These results provide the structural basis for understanding the first step in oxalogenesis and constitute an example of the functional diversity of an enzyme for survival and adaptation in the environment.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Burkholderia/enzymology , Citrate (si)-Synthase/chemistry , Citrate (si)-Synthase/metabolism , Oxalic Acid/metabolism , Quorum Sensing/physiology , Acetyl Coenzyme A/genetics , Acetyl Coenzyme A/metabolism , Bacterial Proteins/genetics , Burkholderia/genetics , Citrate (si)-Synthase/genetics , Hydrogen-Ion Concentration , Microbial Viability , Protein Structure, Tertiary
16.
PLoS One ; 9(1): e84831, 2014.
Article in English | MEDLINE | ID: mdl-24416296

ABSTRACT

Burkholderia glumae is a motile plant pathogenic bacterium that has multiple polar flagella and one LuxR/LuxI-type quorum sensing (QS) system, TofR/TofI. A QS-dependent transcriptional regulator, QsmR, activates flagellar master regulator flhDC genes. FlhDC subsequently activates flagellar gene expression in B. glumae at 37°C. Here, we confirm that the interplay between QS and temperature is critical for normal polar flagellar morphogenesis in B. glumae. In the wild-type bacterium, flagellar gene expression and flagellar number were greater at 28°C compared to 37°C. The QS-dependent flhC gene was significantly expressed at 28°C in two QS-defective (tofI::Ω and qsmR::Ω) mutants. Thus, flagella were present in both tofI::Ω and qsmR::Ω mutants at 28°C, but were absent at 37°C. Most tofI::Ω and qsmR::Ω mutant cells possessed polar or nonpolar flagella at 28°C. Nonpolarly flagellated cells processing flagella around cell surface of both tofI::Ω and qsmR::Ω mutants exhibited tumbling and spinning movements. The flhF gene encoding GTPase involved in regulating the correct placement of flagella in other bacteria was expressed in QS mutants in a FlhDC-dependent manner at 28°C. However, FlhF was mislocalized in QS mutants, and was associated with nonpolar flagellar formation in QS mutants at 28°C. These results indicate that QS-independent expression of flagellar genes at 28°C allows flagellar biogenesis, but is not sufficient for normal polar flagellar morphogenesis in B. glumae. Our findings demonstrate that QS functions together with temperature to control flagellar morphogenesis in B. glumae.


Subject(s)
Burkholderia/cytology , Flagella/metabolism , Quorum Sensing , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Burkholderia/genetics , Burkholderia/physiology , Gene Expression Regulation, Bacterial , Morphogenesis , Movement , Mutation , Protein Transport , Temperature
17.
Biosens Bioelectron ; 50: 256-61, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-23871874

ABSTRACT

In this study, we developed a simple and sensitive biosensor for the determination of toxoflavin (which is toxic to various plants, fungi, animals, and bacteria) in natural samples based on ß-galactosidase activity. The proposed toxoflavin detection method for toxin-producing bacteria or toxin-contaminated foods is simple and cost effective. Burkholderia glumae, a species known to cause rice grain rot and wilt in various field crops, produces toxoflavin under the control of a LysR-type transcriptional regulator ToxR and its ligand toxoflavin. As the expression of toxoflavin biosynthetic genes requires toxoflavin as a co-activator of ToxR, a novel biosensor stain was constructed based on lacZ reporter gene integration into the first gene of the toxoflavin biosynthesis operon, toxABCDE of B. glumae. The biosensor was composed of a sensor strain (COK71), substrates (X-gal or ONPG), and culture medium, without any complex preparation process. We demonstrated that the biosensor strain is highly specific to toxoflavin, and can quantify relative amounts of toxoflavin compared with known concentrations of toxoflavin. The proposed method was reliable and simple; samples containing 50-500 nM of toxoflavin could be analyzed. More importantly, the proposed biosensor strain could identify toxoflavin-producing bacteria in real samples. The excellent performance of this biosensor is useful for diagnostic purposes, such as detecting toxoflavin-contaminated foods and environmental samples.


Subject(s)
Biosensing Techniques/methods , Burkholderia/enzymology , Pyrimidinones/analysis , Triazines/analysis , beta-Galactosidase/metabolism , Biosensing Techniques/economics , Burkholderia/genetics , Burkholderia/physiology , Lac Operon , Oryza/microbiology , Pyrimidinones/metabolism , Quorum Sensing , Triazines/metabolism
18.
Proc Natl Acad Sci U S A ; 109(48): 19775-80, 2012 Nov 27.
Article in English | MEDLINE | ID: mdl-23150539

ABSTRACT

Acyl-homoserine lactone-mediated quorum sensing (QS) regulates diverse activities in many species of Proteobacteria. QS-controlled genes commonly code for production of secreted or excreted public goods. The acyl-homoserine lactones are synthesized by members of the LuxI signal synthase family and are detected by cognate members of the LuxR family of transcriptional regulators. QS affords a means of population density-dependent gene regulation. Control of public goods via QS provides a fitness benefit. Another potential role for QS is to anticipate overcrowding. As population density increases and stationary phase approaches, QS might induce functions important for existence in stationary phase. Here we provide evidence that in three related species of the genus Burkholderia QS allows individuals to anticipate and survive stationary-phase stress. Survival requires QS-dependent activation of cellular enzymes required for production of excreted oxalate, which serves to counteract ammonia-mediated alkaline toxicity during stationary phase. Our findings provide an example of QS serving as a means to anticipate stationary phase or life at the carrying capacity of a population by activating the expression of cytoplasmic enzymes, altering cellular metabolism, and producing a shared resource or public good, oxalate.


Subject(s)
Burkholderia/physiology , Quorum Sensing , Burkholderia/genetics , Gene Expression Regulation, Bacterial , Genes, Bacterial , Hydrogen-Ion Concentration , Mutation , Oxalates/metabolism
19.
J Bacteriol ; 194(5): 982-92, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22178971

ABSTRACT

Burkholderia glumae possesses a quorum-sensing (QS) system mediated by N-octanoyl-homoserine lactone (C(8)-HSL) and its cognate receptor TofR. TofR/C(8)-HSL regulates the expression of a transcriptional regulator, qsmR. We identified one of the universal stress proteins (Usps), Usp2, from a genome-wide analysis of QS-dependent proteomes of B. glumae. In the whole genome of B. glumae BGR1, 11 usp genes (usp1 to usp11) were identified. Among the stress conditions tested, usp1 and usp2 mutants died 1 h after heat shock stress, whereas the other usp mutants and the wild-type strain survived for more than 3 h at 45°C. The expressions of all usp genes were positively regulated by QS, directly by QsmR. In addition, the expressions of usp1 and usp2 were dependent on RpoS in the stationary phase, as confirmed by the direct binding of RpoS-RNA holoenzyme to the promoter regions of the usp1 and usp2 genes. The expression of usp1 was upregulated upon a temperature shift from 37°C to either 28°C or 45°C, whereas the expression of usp2 was independent of temperature stress. This indicates that the regulation of usp1 and usp2 expression is different from what is known about Escherichia coli. Compared to the diverse roles of Usps in E. coli, Usps in B. glumae are dedicated to heat shock stress.


Subject(s)
Bacterial Proteins/metabolism , Burkholderia/physiology , Gene Expression Regulation, Bacterial , Heat-Shock Proteins/metabolism , Quorum Sensing , Sigma Factor/metabolism , Stress, Physiological , Burkholderia/genetics , Burkholderia/radiation effects , DNA, Bacterial/metabolism , Gene Deletion , Gene Expression Profiling , Heat-Shock Proteins/genetics , Hot Temperature , Microbial Viability/radiation effects , Promoter Regions, Genetic , Protein Binding
20.
Proc Natl Acad Sci U S A ; 108(29): 12089-94, 2011 Jul 19.
Article in English | MEDLINE | ID: mdl-21730159

ABSTRACT

Quorum sensing (QS) controls certain behaviors of bacteria in response to population density. In gram-negative bacteria, QS is often mediated by N-acyl-L-homoserine lactones (acyl-HSLs). Because QS influences the virulence of many pathogenic bacteria, synthetic inhibitors of acyl-HSL synthases might be useful therapeutically for controlling pathogens. However, rational design of a potent QS antagonist has been thwarted by the lack of information concerning the binding interactions between acyl-HSL synthases and their ligands. In the gram-negative bacterium Burkholderia glumae, QS controls virulence, motility, and protein secretion and is mediated by the binding of N-octanoyl-L-HSL (C8-HSL) to its cognate receptor, TofR. C8-HSL is synthesized by the acyl-HSL synthase TofI. In this study, we characterized two previously unknown QS inhibitors identified in a focused library of acyl-HSL analogs. Our functional and X-ray crystal structure analyses show that the first inhibitor, J8-C8, binds to TofI, occupying the binding site for the acyl chain of the TofI cognate substrate, acylated acyl-carrier protein. Moreover, the reaction byproduct, 5'-methylthioadenosine, independently binds to the binding site for a second substrate, S-adenosyl-L-methionine. Closer inspection of the mode of J8-C8 binding to TofI provides a likely molecular basis for the various substrate specificities of acyl-HSL synthases. The second inhibitor, E9C-3oxoC6, competitively inhibits C8-HSL binding to TofR. Our analysis of the binding of an inhibitor and a reaction byproduct to an acyl-HSL synthase may facilitate the design of a new class of QS-inhibiting therapeutic agents.


Subject(s)
4-Butyrolactone/analogs & derivatives , Bacterial Proteins/antagonists & inhibitors , Burkholderia/metabolism , Protein Binding , Quorum Sensing/physiology , S-Adenosylmethionine/metabolism , Transcription Factors/antagonists & inhibitors , 4-Butyrolactone/metabolism , Bacterial Proteins/metabolism , Crystallography, X-Ray , Fluorescence , Homoserine/analogs & derivatives , Homoserine/metabolism , Lactones/metabolism , Substrate Specificity , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...