Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech Eng ; 133(2): 021010, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21280882

ABSTRACT

Activities of daily living (ADLs) generate complex, multidirectional forces in the anterior cruciate ligament (ACL). While calibration problems preclude direct measurement in patients, ACL forces can conceivably be measured in animals after technical challenges are overcome. For example, motion and force sensors can be implanted in the animal but investigators must determine the extent to which these sensors and surgery affect normal gait. Our objectives in this study were to determine (1) if surgically implanting knee motion sensors and an ACL force sensor significantly alter normal ovine gait and (2) how increasing gait speed and grade on a treadmill affect ovine gait before and after surgery. Ten skeletally mature, female sheep were used to test four hypotheses: (1) surgical implantation of sensors would significantly decrease average and peak vertical ground reaction forces (VGRFs) in the operated limb, (2) surgical implantation would significantly decrease single limb stance duration for the operated limb, (3) increasing treadmill speed would increase VGRFs pre- and post operatively, and (4) increasing treadmill grade would increase the hind limb VGRFs pre- and post operatively. An instrumented treadmill with two force plates was used to record fore and hind limb VGRFs during four combinations of two speeds (1.0 m/s and 1.3 m/s) and two grades (0 deg and 6 deg). Sensor implantation decreased average and peak VGRFs less than 10% and 20%, respectively, across all combinations of speed and grade. Sensor implantation significantly decreased the single limb stance duration in the operated hind limb during inclined walking at 1.3 m/s but had no effect on single limb stance duration in the operated limb during other activities. Increasing treadmill speed increased hind limb peak (but not average) VGRFs before surgery and peak VGRF only in the unoperated hind limb during level walking after surgery. Increasing treadmill grade (at 1 m/s) significantly increased hind limb average and peak VGRFs before surgery but increasing treadmill grade post op did not significantly affect any response measure. Since VGRF values exceeded 80% of presurgery levels, we conclude that animal gait post op is near normal. Thus, we can assume normal gait when conducting experiments following sensor implantation. Ultimately, we seek to measure ACL forces for ADLs to provide design criteria and evaluation benchmarks for traditional and tissue engineered ACL repairs and reconstructions.


Subject(s)
Mechanical Phenomena , Models, Animal , Movement , Prostheses and Implants , Sheep/physiology , Sheep/surgery , Animals , Anterior Cruciate Ligament/physiology , Biomechanical Phenomena , Female , Forelimb/physiology , Forelimb/surgery , Hindlimb/physiology , Hindlimb/surgery , Physical Conditioning, Animal
2.
Genesis ; 49(5): 410-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21328521

ABSTRACT

We report here on the generation of a new fluorescent protein reporter transgenic mouse line, Col10a1-mCherry, which can be used as a tool to study chondrocyte biology and pathology. Collagen, Type X, alpha 1 (Col10a1) is highly expressed in hypertrophic chondrocytes and commonly used as a gene marker for this cell population. The Col10a1-mCherry reporter line was generated using a bacterial recombination strategy with the mouse BAC clone RP23-192A7. To aid in the characterization of this animal model, we intercrossed Col10a1-mCherry mice with Collagen, Type II, alpha 1 (Col2a1) enhanced cyan fluorescent protein (ECFP) reporter mice and characterized the expression of both chondrocyte reporters during embryonic skeletal development from days E10.5 to E17.5. Additionally, at postnatal day 0, Col10a1-mCherry reporter expression was compared to endogenous Col10a1 mRNA expression in long bones and revealed that mCherry fluorescence extended past the Col10a1 expression domain. However, in situ hybridization for mCherry was consistent with the zone of Col10a1 mRNA expression, indicating that the persistent detection of mCherry fluorescence was a result of the long protein half life of mCherry in conjunction with a very rapid phase of skeletal growth and not due to aberrant transcriptional regulation. Taking advantage of the continued fluorescence of hypertrophic chondrocytes at the chondro-osseus junction, we intercrossed Col10a1-mCherry mice with two different Collagen, Type 1, alpha 1, (Col1a1) osteoblast reporter mice, pOBCol3.6-Topaz and pOBCol2.3-Emerald to investigate the possibility that hypertrophic chondrocytes transdifferentiate into osteoblasts. Evaluation of long bones at birth suggests that residual hypertrophic chondrocytes and osteoblasts in the trabecular zone exist as two completely distinct cell populations. genesis 49:410-418, 2011.


Subject(s)
Chondrocytes/metabolism , Collagen Type X/metabolism , Luminescent Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Animals , Animals, Newborn , Cartilage/embryology , Cartilage/growth & development , Cartilage/metabolism , Chondrocytes/cytology , Collagen Type II/genetics , Collagen Type II/metabolism , Collagen Type X/genetics , Embryo, Mammalian/embryology , Embryo, Mammalian/metabolism , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , In Situ Hybridization , Luminescent Proteins/genetics , Male , Mice , Mice, Transgenic , Microscopy, Fluorescence , Recombinant Fusion Proteins/genetics , Time Factors , Red Fluorescent Protein
3.
J Biomech ; 41(4): 822-8, 2008.
Article in English | MEDLINE | ID: mdl-18164020

ABSTRACT

Introducing mesenchymal stem cell (MSC)-seeded collagen constructs into load-protected wound sites in the rabbit patellar and Achilles tendons significantly improves their repair outcome compared to natural healing of the unfilled defect. However, these constructs would not be acceptable alternatives for repairing complete tendon ruptures because they lack the initial stiffness at the time of surgery to resist the expected peak in vivo forces thereafter. Since the stiffness of these constructs has also been shown to positively correlate with the stiffness of the subsequent repairs, improving initial stiffness by appropriate selection of in vitro culture conditions would seem crucial. In this study we examined the individual and combined effects of collagen scaffold type, construct length, and mechanical stimulation on in vitro implant stiffness. Two levels each of scaffold material (collagen gel vs. collagen sponge), construct length (short vs. long), and mechanical stimulation (stimulated vs. non-stimulated) were examined. Our results indicate that all three treatment factors influenced construct linear stiffness. Increasing the length of the construct had the greatest effect on the stiffness compared to introducing mechanical stimulation or changing the scaffold material. A significant interaction was also found between length and stimulation. Of the eight groups studied, longer, stimulated, cell-sponge constructs showed the highest in vitro linear stiffness. We now plan in vivo studies to determine if higher stiffness constructs generate higher stiffness repairs 12 weeks after surgery and if in vitro construct stiffness continues to correlate with in vivo repair parameters like linear stiffness.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Tendons/physiology , Tissue Engineering , Tissue Scaffolds , Animals , Biomechanical Phenomena , Cell Line , Cells, Cultured , Collagen Type I/physiology , Elasticity , Female , Gels , Patella/injuries , Patella/physiology , Rabbits , Tendon Injuries/physiopathology , Tendon Injuries/surgery
4.
Tissue Eng ; 12(4): 681-9, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16674283

ABSTRACT

The objective of the present study was to test the hypotheses that implantation of cell-seeded constructs in a rabbit Achilles tendon defect model would 1) improve repair biomechanics and matrix organization and 2) result in higher failure forces than measured in vivo forces in normal rabbit Achilles tendon (AT) during an inclined hopping activity. Autogenous tissue-engineered constructs were fabricated in culture between posts in the wells of silicone dishes at four cell-to-collagen ratios by seeding mesenchymal stem cells (MSC) from 18 adult rabbits at each of two seeding densities (0.1 x 10(6) and 1 x 10(6) cell/mL) in each of two collagen concentrations (1.3 and 2.6 mg/mL). After 5 days of contraction, constructs having the two highest ratios (0.4 and 0.8 M/mg) were damaged by excessive cell traction forces and could not be used in subsequent in vivo studies. Constructs at the lower ratios (0.04 and 0.08 M/mg) were implanted in bilateral, 2 cm long gap defects in the rabbit's lateral Achilles tendon. At 12 weeks after surgery, both repair tissues were isolated and either failed in tension (n = 13) to determine their biomechanical properties or submitted for histological analysis (n = 5). No significant differences were observed in any structural or mechanical properties or in histological appearance between the two repair conditions. However, the average maximum force and maximum stress of these repairs achieved 50 and 85% of corresponding values for the normal AT and exceeded the largest peak in vivo forces (19% of failure) previously recorded in the rabbit AT. Average stiffness and modulus were 60 and 85% of normal values, respectively. New constructs with lower cell densities and higher scaffold stiffness that do not excessively contract and tear in culture and that further improve the repair stiffness needed to withstand various levels of expected in vivo loading are currently being investigated.


Subject(s)
Achilles Tendon/growth & development , Collagen/chemistry , Mesenchymal Stem Cell Transplantation/methods , Recovery of Function/physiology , Tendon Injuries/physiopathology , Tissue Engineering/methods , Achilles Tendon/pathology , Achilles Tendon/surgery , Animals , Biomechanical Phenomena/methods , Cell Count , Female , Implants, Experimental , Models, Anatomic , Rabbits , Tendon Injuries/etiology , Tendon Injuries/pathology , Tendon Injuries/surgery , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...