Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(1): 12-16, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36544241

ABSTRACT

Herein we report two reduced rare-earth metal-based superconductors, La26Ge19M5O5 (M = Ag, Cu), that feature an unprecedented [La18O5] cluster composed of five oxygen-centered [La6O] octahedra condensed through shared faces and capped with [Ge4] butterfly rings. The structure, determined by single-crystal X-ray diffraction, crystallizes in a tetragonal space group (P4/nmm), with a = 15.508(2) Å and c = 11.238(2) Å. Resistivity and magnetic susceptibility measurements show onsets of superconductivity at Tc = 5.4 and 6.4 K for the Ag and Cu compounds, respectively. Applying high pressures, up to 1.3 GPa, results in increased superconducting transition temperatures (Tc = 6.8 K for Ag and 7.2 K for Cu compounds), with no sign of saturation.

2.
Proc Natl Acad Sci U S A ; 118(28)2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34234019

ABSTRACT

To raise the superconducting-transition temperature (Tc) has been the driving force for the long-sustained effort in superconductivity research. Recent progress in hydrides with Tcs up to 287 K under pressure of 267 GPa has heralded a new era of room temperature superconductivity (RTS) with immense technological promise. Indeed, RTS will lift the temperature barrier for the ubiquitous application of superconductivity. Unfortunately, formidable pressure is required to attain such high Tcs. The most effective relief to this impasse is to remove the pressure needed while retaining the pressure-induced Tc without pressure. Here, we show such a possibility in the pure and doped high-temperature superconductor (HTS) FeSe by retaining, at ambient pressure via pressure quenching (PQ), its Tc up to 37 K (quadrupling that of a pristine FeSe at ambient) and other pressure-induced phases. We have also observed that some phases remain stable without pressure at up to 300 K and for at least 7 d. The observations are in qualitative agreement with our ab initio simulations using the solid-state nudged elastic band (SSNEB) method. We strongly believe that the PQ technique developed here can be adapted to the RTS hydrides and other materials of value with minimal effort.

3.
Nano Lett ; 21(5): 2191-2198, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33646790

ABSTRACT

Materials with interfaces often exhibit extraordinary phenomena exemplified by rich physics, such as high-temperature superconductivity and enhanced electronic correlations. However, demonstrations of confined interfaces to date have involved intensive effort and fortuity, and no simple path is consistently available. Here, we report the achievement of interfacial superconductivity in the nonsuperconducting parent compounds AEFe2As2, where AE = Ca, Sr, or Ba, by simple subsequent annealing of the as-grown samples in an atmosphere of As, P, or Sb. Our results indicate that the superconductivity originates from electron transfer at the interface of the hybrid van der Waals heterostructures, consistent with the two-dimensional superconducting transition observed. The observations suggest a common origin of interfaces for the nonbulk superconductivity previously reported in the AEFe2As2 compound family and provide insight for the further exploration of interfacial superconductivity.

4.
J Am Chem Soc ; 140(22): 6785-6788, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29782155

ABSTRACT

A metastable germanium allotrope, Ge(oP32), was synthesized as polycrystalline powders and single crystals from the mild-oxidation/delithiation of Li7Ge12 in ionic liquids. Its crystal structure, from single crystal X-ray diffraction ( Pbcm, a = 8.1527(4) Å, b = 11.7572(5) Å, c = 7.7617(4) Å), features a complex covalent network of 4-bonded Ge, resulting from a well-ordered topotactic oxidative condensation of [Ge12]7- layers. It is a diamagnetic semiconductor ( Eg = 0.33 eV), and transforms exothermically and irreversibly to α-Ge at 363 °C. This demonstrates the potential of ionic liquids as reactive media in the mild oxidation of Zintl phases to new highly crystallized modifications of elements and simple compounds.

5.
J Am Chem Soc ; 137(2): 636-9, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25581015

ABSTRACT

A new niobium oxyfluoride, Nb2O2F3, synthesized through the reaction of Nb, SnO, and SnF2 in Sn flux, within welded Nb containers, crystallizes in a monoclinic structure (space group: I2/a; a = 5.7048(1)Å, b = 5.1610(1)Å, c = 12.2285(2)Å, ß = 95.751(1)°). It features [Nb2X10] units (X = O, F), with short (2.5739(1) Å) Nb-Nb bonds, that are linked through shared O/F vertices to form a 3D structure configurationally isotypic to ζ-Nb2O5. Nb2O2F3 undergoes a structural transition at ∼90 K to a triclinic structure (space group: P1̅; a = 5.1791(5)Å, b = 5.7043(6)Å, c = 6.8911(7)Å, α = 108.669(3)°, ß = 109.922(2)°, γ = 90.332(3)°). The transition is described as a disproportionation or charge ordering of [Nb2](7+) dimers: (2[Nb2](7+) → [Nb2](6+) + [Nb2](8+)), resulting in doubly (2.5000(9) Å) and singly bonded (2.6560(9) Å) Nb2 dimers. The structural transition is accompanied by an unusual field-independent "spin-gap-like" magnetic transition.

6.
Inorg Chem ; 54(3): 1049-54, 2015 Feb 02.
Article in English | MEDLINE | ID: mdl-25525885

ABSTRACT

A metal-rich ternary phosphide, SrPt(6)P(2), with a unique structure type was synthesized at high temperatures. Its crystal structure was determined by single-crystal X-ray diffraction [cubic space group Pa3̅; Z = 4; a = 8.474(2) Å, and V = 608.51(2) Å(3)]. The structure features a unique three-dimensional anionic (Pt(6)P(2))(2-) network of vertex-shared Pt(6)P trigonal prisms. The Sr atoms occupy a 12-coordinate (Pt) cage site and form a cubic close-packed (face-centered-cubic) arrangement, and the P atoms formally occupy tetrahedral interstices. The metallic compound becomes superconducting at 0.6 K, as evidenced by magnetic and resistivity measurements.

7.
J Am Chem Soc ; 134(40): 16520-3, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22998020

ABSTRACT

A new layered Ti-based pnictide oxide superconductor, Ba(1-x)Na(x)Ti(2)Sb(2)O (0.0 ≤ x ≤ 0.33), is reported. X-ray studies revealed that it crystallizes in the tetragonal CeCr(2)Si(2)C structure. The undoped parent compound, BaTi(2)Sb(2)O [P4/mmm; a = 4.1196(1) Å; c = 8.0951(2) Å], exhibits a charge density wave (CDW)/spin density wave (SDW) transition at 54 K. Upon chemical doping with Na, the CDW/SDW transition is systematically suppressed, and superconductivity arises with the critical temperature (T(c)) increasing to 5.5 K. Bulk superconductivity was confirmed by resistivity, magnetic, and heat capacity measurements. Like the high-T(c) cuprates and the iron pnictides, the superconductivity in BaTi(2)Sb(2)O arises from an ordered state. Similarities and differences between BaTi(2)Sb(2)O and the cuprate and iron pnictide superconductors are discussed.

8.
Proc Natl Acad Sci U S A ; 108(38): 15705-9, 2011 Sep 20.
Article in English | MEDLINE | ID: mdl-21911404

ABSTRACT

We report the detection of unusual superconductivity up to 49 K in single crystalline CaFe(2)As(2) via electron-doping by partial replacement of Ca by rare-earth. The superconducting transition observed suggests the possible existence of two phases: one starting at 49 K, which has a low critical field < 4 Oe, and the other at 21 K, with a much higher critical field > 5 T. Our observations are in strong contrast to previous reports of doping or pressurizing layered compounds AeFe(2)As(2) (or Ae122), where Ae = Ca, Sr, or Ba. In Ae122, hole-doping has been previously observed to generate superconductivity with a transition temperature (T(c)) only up to 38 K and pressurization has been reported to produce superconductivity with a T(c) up to 30 K. The unusual 49 K phase detected will be discussed.


Subject(s)
Arsenicals/chemistry , Calcium Compounds/chemistry , Electric Conductivity , Electrons , Ferrous Compounds/chemistry , Transition Temperature , Atmospheric Pressure , Crystallization , Phase Transition , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...