Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
J Palliat Med ; 27(5): 663-666, 2024 May.
Article in English | MEDLINE | ID: mdl-38608233

ABSTRACT

Introduction: Our research group is conducting three large randomized placebo-controlled trials of medicinal cannabis for cancer symptoms. All participants are invited to take part in a posttrial surveillance study. Methods: Participants were given the manufacturers dosing instructions and liberty to titrate to effect. Data were collected on symptoms (Edmonton Symptom Assessment Scale [ESAS] score), perceived benefits, adverse effects, satisfaction with the product, and dose/frequency. Results: Twenty-six percent of eligible participants consented to take part in the surveillance study. Most participants changed their self-titrated dose at least once. Pain, sleep, and mood were the most frequently cited symptoms which improved. Fatigue, nausea, and cognitive impairment were the most frequently mentioned adverse effects. Conclusion: Participants felt confident making changes to their medicinal cannabis dose within the limits suggested by the manufacturer of each product. A number of benefits and adverse effects were ascribed to the product. Benefits were similar to those described in previous studies.


Subject(s)
Medical Marijuana , Neoplasms , Palliative Care , Humans , Medical Marijuana/therapeutic use , Medical Marijuana/adverse effects , Male , Female , Neoplasms/drug therapy , Middle Aged , Australia , Aged , Adult , Aged, 80 and over
2.
bioRxiv ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38077019

ABSTRACT

Osteomyelitis occurs when Staphylococcus aureus invades the bone microenvironment, resulting in a bone marrow abscess with a spatially defined architecture of cells and biomolecules. Imaging mass spectrometry and microscopy are invaluable tools that can be employed to interrogate the lipidome of S. aureus-infected murine femurs to reveal metabolic and signaling consequences of infection. Here, nearly 250 lipids were spatially mapped to healthy and infection-associated morphological features throughout the femur, establishing composition profiles for tissue types. Ether lipids and arachidonoyl lipids were significantly altered between cells and tissue structures in abscesses, suggesting their roles in abscess formation and inflammatory signaling. Sterols, triglycerides, bis(monoacylglycero)phosphates, and gangliosides possessed ring-like distributions throughout the abscess, indicating dysregulated lipid metabolism in a subpopulation of leukocytes that cannot be discerned with traditional microscopy. These data provide chemical insight into the signaling function and metabolism of cells in the fibrotic border of abscesses, likely characteristic of lipid-laden macrophages.

3.
Orthop Clin North Am ; 54(2): 237-246, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36894295

ABSTRACT

Accurate screw placement is critical to avoid vascular or neurologic complications during spine surgery and to maximize fixation for fusion and deformity correction. Computer-assisted navigation, robotic-guided spine surgery, and augmented reality surgical navigation are currently available technologies that have been developed to improve screw placement accuracy. The advent of multiple generations of new technologies within the past 3 decades has presented surgeons with a diverse array of choices when it comes to pedicle screw placement. Considerations for patient safety and optimal outcomes must be paramount when selecting a technology.


Subject(s)
Augmented Reality , Pedicle Screws , Robotic Surgical Procedures , Spinal Fusion , Surgery, Computer-Assisted , Humans , Spine
4.
Spine (Phila Pa 1976) ; 48(5): 301-309, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36730667

ABSTRACT

STUDY DESIGN: Delphi method. OBJECTIVE: To gain consensus on the following questions: (1) When should anticoagulation/antiplatelet (AC/AP) medication be stopped before elective spine surgery?; (2) When should AC/AP medication be restarted after elective spine surgery?; (3) When, how, and in whom should venous thromboembolism (VTE) chemoprophylaxis be started after elective spinal surgery? SUMMARY OF BACKGROUND DATA: VTE can lead to significant morbidity after adult spine surgery, yet postoperative VTE prophylaxis practices vary considerably. The management of preoperative AC/AP medication is similarly heterogeneous. MATERIALS AND METHODS: Delphi method of consensus development consisting of three rounds (January 26, 2021, to June 21, 2021). RESULTS: Twenty-one spine surgeons were invited, and 20 surgeons completed all rounds of questioning. Consensus (>70% agreement) was achieved in 26/27 items. Group consensus stated that preoperative Direct Oral Anticoagulants should be stopped two days before surgery, warfarin stopped five days before surgery, and all remaining AC/AP medication and aspirin should be stopped seven days before surgery. For restarting AC/AP medication postoperatively, consensus was achieved for low-risk/medium-risk/high-risk patients in 5/5 risk factors (VTE history/cardiac/ambulation status/anterior approach/operation). The low/medium/high thresholds were POD7/POD5/POD2, respectively. For VTE chemoprophylaxis, consensus was achieved for low-risk/medium-risk/high-risk patients in 12/13 risk factors (age/BMI/VTE history/cardiac/cancer/hormone therapy/operation/anterior approach/staged separate days/staged same days/operative time/transfusion). The one area that did not gain consensus was same-day staged surgery. The low-threshold/medium-threshold/high-threshold ranges were postoperative day 5 (POD5) or none/POD3-4/POD1-2, respectively. Additional VTE chemoprophylaxis considerations that gained consensus were POD1 defined as the morning after surgery regardless of operating finishing time, enoxaparin as the medication of choice, and standardized, rather than weight-based, dose given once per day. CONCLUSIONS: In the first known Delphi study to address anticoagulation/antiplatelet recommendations for elective spine surgery (preoperatively and postoperatively); our Delphi consensus recommendations from 20 spine surgeons achieved consensus on 26/27 items. These results will potentially help standardize the management of preoperative AC/AP medication and VTE chemoprophylaxis after adult elective spine surgery.


Subject(s)
Venous Thromboembolism , Adult , Humans , Venous Thromboembolism/etiology , Postoperative Complications/etiology , Anticoagulants/therapeutic use , Spine/surgery , Platelet Aggregation Inhibitors , Risk Factors
5.
Global Spine J ; 13(7): 2047-2052, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35000409

ABSTRACT

STUDY DESIGN: Prospective cohort study. OBJECTIVES: In spine surgery, accurate screw guidance is critical to achieving satisfactory fixation. Augmented reality (AR) is a novel technology to assist in screw placement and has shown promising results in early studies. This study aims to provide our early experience evaluating safety and efficacy with an Food and Drug Administration-approved head-mounted (head-mounted device augmented reality (HMD-AR)) device. METHODS: Consecutive adult patients undergoing AR-assisted thoracolumbar fusion between October 2020 and August 2021 with 2 -week follow-up were included. Preoperative, intraoperative, and postoperative data were collected to include demographics, complications, revision surgeries, and AR performance. Intraoperative 3D imaging was used to assess screw accuracy using the Gertzbein-Robbins (G-R) grading scale. RESULTS: Thirty-two patients (40.6% male) were included with a total of 222 screws executed using HMD-AR. Intraoperatively, 4 (1.8%) were deemed misplaced and revised using AR or freehand. The remaining 218 (98.2%) screws were placed accurately. There were no intraoperative adverse events or complications, and AR was not abandoned in any case. Of the 208 AR-placed screws with 3D imaging confirmation, 97.1% were considered clinically accurate (91.8% Grade A, 5.3% Grade B). There were no early postoperative surgical complications or revision surgeries during the 2 -week follow-up. CONCLUSIONS: This early experience study reports an overall G-R accuracy of 97.1% across 218 AR-guided screws with no intra or early postoperative complications. This shows that HMD-AR-assisted spine surgery is a safe and accurate tool for pedicle, cortical, and pelvic fixation. Larger studies are needed to continue to support this compelling evolution in spine surgery.

6.
Global Spine J ; 13(4): 1030-1035, 2023 May.
Article in English | MEDLINE | ID: mdl-34018420

ABSTRACT

STUDY DESIGN: Retrospective observational cohort. OBJECTIVES: We sought to evaluate the impact of ESR on in-hospital and 90-day postoperative opioid consumption, length of stay, urinary catheter removal and postoperative ambulation after lumbar fusion for degenerative conditions. METHODS: We evaluated patients undergoing lumbar fusion surgery at a single, multi-surgeon center in the transition period prior to (N = 174) and after (N = 116) adoption of ESR, comparing in-hospital and 90-day postoperative opioid consumption. Regression analysis was used to control for confounders. Secondary analysis was preformed to evaluate the association between ESR and length of stay, urinary catheter removal and ambulation after surgery. RESULTS: Mean age study participants was 52.6 years with 62 (47%) females. Demographic characteristics were similar between the Pre-ESR and ESR groups. ESR patients had better 3-month pain scores, ambulated earlier, had urinary catheters removed earlier and decreased in-hospital opioid consumption compared to Pre-ESR patients. There was no difference in 90-day opioid consumption between the 2 groups. Regression analysis showed that ESR was strongly associated with in-hospital opioid consumption, accounting for 30% of the variability in Morphine Milligram Equivalents (MME). In-hospital opioid consumption was also associated with preoperative pain scores, number of surgical levels, and insurance type (private vs government). Pre-op pain sores were associated with 90-day opioid consumption. Secondary analysis showed that ESR was associated with a shorter length of stay and earlier ambulation. CONCLUSIONS: This study showed ESR has the potential to improve recovery after lumbar fusion for degenerative conditions with reduced in-hospital opioid consumption and improved postoperative pain scores.

7.
Global Spine J ; 13(2): 425-431, 2023 Mar.
Article in English | MEDLINE | ID: mdl-33631976

ABSTRACT

STUDY DESIGN: Biomechanical Study. OBJECTIVE: The search for optimal spinal alignment has led to the development of sophisticated formulas and software for preoperative planning. However, preoperative plans are not always appropriately executed since rod contouring during surgery is often subjective and estimated by the surgeon. We aimed to assess whether rods contoured to specific angles with a French rod bender using a template guide will be more accurate than rods contoured without a template. METHODS: Ten experienced spine surgeons were requested to contour two 125 × 5.5 mm Ti64 rods to 40°, 60° and 80° without templates and then 2 more rods using 2D metallic templates with the same angles. Rod angles were then measured for accuracy and compared. RESULTS: Average angles for rods bent without a template to 40°, 60° and 80° were 60.2°, 78.9° and 97.5°, respectively. Without a template, rods were overbent by a mean of 18.9°. When using templates of 40°, 60° and 80°, mean bend angles were 41.5°, 59.1° and 78.7°, respectively, with an average underbend of 0.2°. Differences between the template and non-template groups for each target angle were all significant (p < 0.001). CONCLUSIONS: Without the template, surgeons tend to overbend rods compared to the desired angle, while surgeons improved markedly with a template guide. This tendency to overbend could have significant impact on patient outcomes and risk of proximal junctional failure and warrants further research to better enable surgeons to more accurately execute preoperative alignment plans.

8.
N Am Spine Soc J ; 12: 100185, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36479002

ABSTRACT

Background: The opioid epidemic in the US has led prescribers to reevaluate postoperative pain control particularly in the field of spine surgery, where postoperative analgesia requirements and consumption have historically been high. There is a need to mitigate the quantity of unused pills after surgery by adjusting prescribing practices. Achieving the balance of pain control after surgery without overprescribing opioids may be accomplished by developing a modified approach to prescribing practices; however, there is a need to first understand the opioid requirements of the modern spine surgery patient with respect to their elective spine surgery. Therefore, the primary aim of this study was to determine the percentage of opioids not utilized at 90-days after elective spine surgery. Secondary aims were to identify differences in the percentage of unused opioids between surgical subgroups and preoperative opioid status, to determine factors associated with opioid utilization, and to estimate the distribution of opioids consumed to control pain up to the 90th percentile in each surgical subgroup. Methods: In this prospective, observational cohort study, adults undergoing elective spine surgery at a multi-surgeon, single center were prospectively enrolled and divided into subgroups: anterior cervical, lumbar decompression, and short-segment lumbar fusion. Prescribed MMEs were identified from prescriptions, consumed MMEs were obtained from pill counts, and the percent leftover was calculated. Distributions of MMEs consumed were analyzed to compare utilization between preoperative opioid users or non-users within each surgical subgroup. Results: Of 117 patients, 41.9% were preoperative opioid users. The percentage of unused opioids by surgical subgroup was: 45.4% cervical, 57.3% lumbar decompression, and 37.4% lumbar fusion (p=0.066). The percentage of unused opioids by preoperative opioid exposure was greater in the opioid non-users (58.0%) than users (28.4%, p<0.001)). Regression analysis showed that surgical subgroup and preoperative opioid exposure were associated with leftover opioids. Conclusions: At 90-days, the percentage of unused opioids was over 45% in this cohort of elective spine surgery patients and was nearly double in the group without preoperative opioid exposure. These results suggest the modern elective spine surgery patient is using less opioids than prescribed, supporting the conclusion that the number of MMEs prescribed can be reduced to minimize quantities of leftover pills available for diversion, without sacrificing the priority of appropriate postoperative pain control.

9.
Stem Cells Int ; 2022: 9617511, 2022.
Article in English | MEDLINE | ID: mdl-36579141

ABSTRACT

Introduction: Degenerative disc disease is a common cause of chronic low back pain. Surgical intervention is an invasive treatment associated with high costs. There is growing interest in regenerative medicine as a less invasive but direct disc treatment for chronic discogenic low back pain. Objective: To evaluate clinical improvement of primary discogenic low back pain with intradiscal injection of autologous bone marrow aspirate concentrate (BMAC). Study Design. Prospective cohort study. Setting. Single, multiphysician center. Patients. 32 adult patients undergoing intradiscal injection of autologous BMAC for the treatment of primary discogenic low back pain. Interventions. Intradiscal injection of autologous BMAC. Main Outcome Measures. Primary outcome measure is visual analog back pain scale (VAS back pain). Secondary outcome measures include ODI, VAS leg pain, and EQ-5D-5L scores. Outcomes were compared from baseline to 1 year. Results: Thirty-two patients (56.3% male) with a mean age of 45.9 years were enrolled, giving 92 treated levels. Mean VAS back and leg pain scores improved from 5.4 to 3.0 (p < 0.001) and 2.8 to 1.3 (p = 0.005), respectively. Mean ODI scores decreased from 33.5 to 21.1 (p < 0.001), and EQ-5D-5L scores improved from 0.69 to 0.78 (p = 0.001). Using established MCID values, 59.4% had clinically significant improvement in VAS back pain, 43.8% in VAS leg pain, and 56.3% in ODI scores. Conclusion: Intradiscal injection of autologous BMAC significantly improved low back pain, disability, and quality of life at one year. This study suggests that intradiscal BMAC has the potential to be an effective nonsurgical treatment for chronic discogenic low back pain.

10.
Neurospine ; 19(3): 773-779, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36203302

ABSTRACT

Minimally invasive spine surgery reduces tissue dissection and retraction, decreasing the morbidity associated with traditional open spine surgery by decreasing blood loss, blood transfusion, complications, and pain. One of the key challenges with a minimally invasive approach is achieving consistent posterior fusion. Although advantageous in all fusion surgeries, solid posterior fusion is particularly important in spinal deformity, revisions, and fusions without anterior column support. A minimally invasive surgical approach accomplished without sacrificing the quality of the posterior fusion has the potential to decrease both short- and long-term complications compared to the traditional open techniques. Innovations in navigated and robotic-assisted spine surgery continue to address this need. In this article, we will outline the feasibility of achieving posterior facet fusion using the Mazor X Stealth Edition Robotic Guidance System.

11.
J Neurosurg Spine ; 37(6): 893-901, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35901700

ABSTRACT

OBJECTIVE: The analysis of sagittal alignment by measuring spinopelvic parameters has been widely adopted among spine surgeons globally, and sagittal imbalance is a well-documented cause of poor quality of life. These measurements are time-consuming but necessary to make, which creates a growing need for an automated analysis tool that measures spinopelvic parameters with speed, precision, and reproducibility without relying on user input. This study introduces and evaluates an algorithm based on artificial intelligence (AI) that fully automatically measures spinopelvic parameters. METHODS: Two hundred lateral lumbar radiographs (pre- and postoperative images from 100 patients undergoing lumbar fusion) were retrospectively analyzed by board-certified spine surgeons who digitally measured lumbar lordosis, pelvic incidence, pelvic tilt, and sacral slope. The novel AI algorithm was also used to measure the same parameters. To evaluate the agreement between human and AI-automated measurements, the mean error (95% CI, SD) was calculated and interrater reliability was assessed using the 2-way random single-measure intraclass correlation coefficient (ICC). ICC values larger than 0.75 were considered excellent. RESULTS: The AI algorithm determined all parameters in 98% of preoperative and in 95% of postoperative images with excellent ICC values (preoperative range 0.85-0.92, postoperative range 0.81-0.87). The mean errors were smallest for pelvic incidence both pre- and postoperatively (preoperatively -0.5° [95% CI -1.5° to 0.6°] and postoperatively 0.0° [95% CI -1.1° to 1.2°]) and largest preoperatively for sacral slope (-2.2° [95% CI -3.0° to -1.5°]) and postoperatively for lumbar lordosis (3.8° [95% CI 2.5° to 5.0°]). CONCLUSIONS: Advancements in AI translate to the arena of medical imaging analysis. This method of measuring spinopelvic parameters on spine radiographs has excellent reliability comparable to expert human raters. This application allows users to accurately obtain critical spinopelvic measurements automatically, which can be applied to clinical practice. This solution can assist physicians by saving time in routine work and by avoiding error-prone manual measurements.


Subject(s)
Lordosis , Humans , Lordosis/diagnostic imaging , Lordosis/surgery , Reproducibility of Results , Retrospective Studies , Artificial Intelligence , Quality of Life , Sacrum/diagnostic imaging , Sacrum/surgery , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery
12.
Circulation ; 146(1): 36-47, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35533093

ABSTRACT

BACKGROUND: Timely diagnosis of structural heart disease improves patient outcomes, yet many remain underdiagnosed. While population screening with echocardiography is impractical, ECG-based prediction models can help target high-risk patients. We developed a novel ECG-based machine learning approach to predict multiple structural heart conditions, hypothesizing that a composite model would yield higher prevalence and positive predictive values to facilitate meaningful recommendations for echocardiography. METHODS: Using 2 232 130 ECGs linked to electronic health records and echocardiography reports from 484 765 adults between 1984 to 2021, we trained machine learning models to predict the presence or absence of any of 7 echocardiography-confirmed diseases within 1 year. This composite label included the following: moderate or severe valvular disease (aortic/mitral stenosis or regurgitation, tricuspid regurgitation), reduced ejection fraction <50%, or interventricular septal thickness >15 mm. We tested various combinations of input features (demographics, laboratory values, structured ECG data, ECG traces) and evaluated model performance using 5-fold cross-validation, multisite validation trained on 1 site and tested on 10 independent sites, and simulated retrospective deployment trained on pre-2010 data and deployed in 2010. RESULTS: Our composite rECHOmmend model used age, sex, and ECG traces and had a 0.91 area under the receiver operating characteristic curve and a 42% positive predictive value at 90% sensitivity, with a composite label prevalence of 17.9%. Individual disease models had area under the receiver operating characteristic curves from 0.86 to 0.93 and lower positive predictive values from 1% to 31%. Area under the receiver operating characteristic curves for models using different input features ranged from 0.80 to 0.93, increasing with additional features. Multisite validation showed similar results to cross-validation, with an aggregate area under the receiver operating characteristic curve of 0.91 across our independent test set of 10 clinical sites after training on a separate site. Our simulated retrospective deployment showed that for ECGs acquired in patients without preexisting structural heart disease in the year 2010, 11% were classified as high risk and 41% (4.5% of total patients) developed true echocardiography-confirmed disease within 1 year. CONCLUSIONS: An ECG-based machine learning model using a composite end point can identify a high-risk population for having undiagnosed, clinically significant structural heart disease while outperforming single-disease models and improving practical utility with higher positive predictive values. This approach can facilitate targeted screening with echocardiography to improve underdiagnosis of structural heart disease.


Subject(s)
Heart Diseases , Machine Learning , Adult , Echocardiography , Electrocardiography , Heart Diseases/diagnostic imaging , Heart Diseases/epidemiology , Humans , Retrospective Studies
13.
Neonatology ; 119(4): 418-427, 2022.
Article in English | MEDLINE | ID: mdl-35598593

ABSTRACT

INTRODUCTION: Understanding factors that associate with neonatal death may lead to strategies or interventions that can aid clinicians and inform families. OBJECTIVE: The aim of the study was to develop an early prediction model of neonatal death in extremely low gestational age (ELGA, <28 weeks) neonates. METHODS: A predictive cohort study of ELGA neonates was derived from the Swedish Neonatal Quality Register between the years 2011 to May 2021. The goal was to use readily available clinical variables, collected within the first hour of birth, to predict in-hospital death. Data were split into a train cohort (80%) to build the model and tested in 20% of randomly selected neonates. Model performance was assessed via area under the receiver operating characteristic curve (AUC) and compared to validated mortality prediction models and an external cohort of neonates. RESULTS: Among 3,752 live-born extremely preterm infants (46% girls), in-hospital mortality was 18% (n = 685). The median gestational age and birth weight were 25.0 weeks (interquartile range [IQR] 24.0, 27.0) and 780 g (IQR 620, 940), respectively. The proposed model consisted of three variables: birth weight (grams), Apgar score at 5 min of age, and gestational age (weeks). The BAG model had an AUC of 76.9% with a 95% confidence interval (CI) (72.6%, 81.3%), while birth weight and gestational age had an AUC of 73.1% (95% CI: 68.4%,77.9%) and 71.3% (66.3%, 76.2%). In the validation cohort, the BAG model had an AUC of 68.9%. CONCLUSION: The BAG model is a new mortality prediction model in ELGA neonates that was developed using readily available information.


Subject(s)
Perinatal Death , Birth Weight , Cohort Studies , Female , Gestational Age , Hospital Mortality , Humans , Infant , Infant Mortality , Infant, Extremely Premature , Infant, Newborn , Male
14.
J Am Soc Mass Spectrom ; 33(6): 1073-1076, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35545232

ABSTRACT

The gastrointestinal tract, including luminal content, harbors a complex mixture of microorganisms, host dietary content, and immune factors. Existing imaging approaches remove luminal content and only visualize small regions of the GI tract. Here, we demonstrate a workflow for multimodal imaging using matrix-assisted laser desorption/ionization imaging mass spectrometry, autofluorescence, and bright field microscopy for mapping intestinal tissue and luminal content. Results comparing tissue and luminal content in control murine tissue show both unique molecular and elemental distributions and abundances using multimodal protein, lipid, and elemental imaging. For instance, lipid PC(42:1) is 2× higher intensity in luminal content than tissue, while PC(32:0) is 80× higher intensity in tissue. Additionally, some ions such as the protein at m/z 3443 and the element manganese are only detected in luminal content, while the protein at m/z 8564 was only detected in tissue and phosphorus had 2× higher abundance in tissue. These data highlight the robust molecular information that can be gained from the gastrointestinal tract with the inclusion of luminal content.


Subject(s)
Gastrointestinal Tract , Proteins , Animals , Gastrointestinal Tract/chemistry , Ions , Lipids/analysis , Mice , Multimodal Imaging , Proteins/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
15.
J Spine Surg ; 8(1): 9-20, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35441099

ABSTRACT

Background: Although a growing amount of literature that suggests robots are safe and can achieve comparable outcomes to conventional techniques, much of this literature is limited by small sample sizes and single-surgeon or single center series. Furthermore, it is unclear what the impact of robotic technology has made on operative and clinical outcomes over time. This is the first and largest multicenter study to examine the trends in outcomes and complications after robot-assisted spine surgery over a 5-year period. Methods: Adult (≥18 years old) patients who underwent spine surgery with robot-assistance between 2015 and 2019 at four unique spine centers. The robotic systems used included the Mazor Renaissance, Mazor X, and Mazor Stealth Edition. Patients with incomplete data were excluded from this study. The minimum follow-up was 90 days. Results: A total of 722 adult patients were included (117 Renaissance, 477 X, 128 Stealth). Most patient and operative factors (e.g., sex, tobacco status, total instrumented levels, and pelvic fixation,) were similar across the years. Mean ± standard deviation Charlson comorbidity index (CCI) was 1.5±1.5. The most commonly reported diagnoses included high grade spondylolisthesis (40.6%), degenerative disc disease (18.4%), and degenerative scoliosis (17.6%). Mean (standard deviation) number of instrumented levels was 3.8±3.4. From 2015 to 2019, average robot time per screw improved from 7.2 to 5.5 minutes (P=0.004, R2=0.649). Average fluoroscopy time per screw improved from 15.2 to 9.4 seconds (P=0.002). Rates of both intraoperative screw exchange for misplaced screw (2015-2016: 2.7%, 2019: 0.8%, P=0.0115, R2=0.1316) and robot abandonment (2015-2016: 7.1%, 2019: 1.1%, P=0.011, R2=0.215) improved significantly over time. The incidence of other intraoperative complications (e.g., dural tear, loss of motor/sensory function, blood transfusion) remained consistently low, but similar throughout the years. The length of stay (LOS) decreased by nearly 1 day from 2015 to 2019 (P=0.007, R2=0.779). 90-day reoperation rates did not change significantly. Conclusions: At four institutions among seven surgeons, we demonstrate robot screw accuracy, reliability, operative efficiency, and radiation exposure improved significantly from 2015 to 2019. 90-day complication rates remained low and LOS decreased significantly with time. These findings further validate continued usage of robot-assisted spine surgery and the path toward improved value-based care.

16.
Bioresour Technol ; 354: 127144, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35413421

ABSTRACT

The unprecedented demand for seafood has resulted in land-based recirculating aquaculture systems (RAS), a highly intensive but sustainable fish farming method. However, intensification also results in concentrated waste streams of fecal matter and uneaten feed. Harvesting and processing vast quantities of fish also leads to the production of byproducts, further creating disposal challenges for fish farms. Recent research indicates that anaerobic digestion (AD), often used for waste treatment in agricultural and wastewater industries, may provide a viable solution. Limited research on AD of freshwater, brackish, and saline wastewater from RAS facilities and co-digestion of seafood byproducts has shown promising results but with considerable operational and process stability issues. This review discusses challenges to AD due to low solid concentrations, salinity, low carbon/nitrogen ratio, and high lipid content in the waste streams. Opportunities for recovering valuable biomolecules and nutrients through microbial treatment, aquaponics, microalgae, and polyhydroxyalkanoate production are also discussed.


Subject(s)
Aquaculture , Wastewater , Anaerobiosis , Nitrogen/analysis , Seafood
17.
Anal Chem ; 94(7): 3165-3172, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35138834

ABSTRACT

Bone and bone marrow are vital to mammalian structure, movement, and immunity. These tissues are also commonly subjected to molecular alterations giving rise to debilitating diseases like rheumatoid arthritis and osteomyelitis. Technologies such as matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) facilitate the discovery of spatially resolved chemical information in biological tissue samples to help elucidate the complex molecular processes underlying pathology. Traditionally, preparation of osseous tissue for MALDI IMS has been difficult due to its mineralized composition and heterogeneous morphology, and compensation for these challenges with decalcification and fixation protocols can remove or delocalize molecular species. Here, sample preparation methods were advanced to enable multimodal MALDI IMS of undecalcified, fresh-frozen murine femurs, allowing the distribution of endogenous lipids to be linked to tissue structures and cell types. Adhesive-bound bone sections were mounted onto conductive glass slides with microscopy-compatible glue and freeze-dried to minimize artificial bone marrow damage. High spatial resolution (10 µm) MALDI IMS was employed to characterize lipid distributions, and use of complementary microscopy modalities aided tissue and cell assignments. For example, various phosphatidylcholines localize to the bone marrow, adipose tissue, marrow adipose tissue, and muscle. Further, sphingomyelin(42:1) was abundant in megakaryocytes, whereas sphingomyelin(42:2) was diminished in this cell type. These data reflect the vast molecular and cellular heterogeneity indicative of the bone marrow and the soft tissue surrounding the femur. Multimodal MALDI IMS has the potential to advance bone-related biomedical research by offering deep molecular coverage with spatial relevance in a preserved native bone microenvironment.


Subject(s)
Bone and Bones , Microscopy , Animals , Mice , Muscles , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Sphingomyelins
18.
J Robot Surg ; 16(5): 1099-1104, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34853954

ABSTRACT

The study design is retrospective, multi-surgeon, single-center review. The objective is to evaluate complication rates, revision rates, and accuracy grading for robotic-guided S2 alar-iliac (S2AI) screws. Sixty-five consecutive patients underwent S2AI fixation (118 screws) as part of a posterior spine fusion using robotic-guidance. Screws were placed percutaneously in 14 cases and 51 were placed in an open fashion by three board-certified spine surgeons using the Mazor core technology robotic systems (Mazor X, n = 42; Mazor XSE, n = 23). Medical charts were retrospectively reviewed for revisions and complications. All patients were followed for 90 days or greater. Postoperative CT scans were obtained in 22 of the 51 patients, allowing for 46 screws to be reviewed by an independent neuroradiologist who graded the screws for accuracy. There were no intraoperative or postoperative complications associated with S2AI screw placement. There were no revisions found to be related to the S2AI screw placement. All 46 screws evaluated with postoperative CT scans were reported as being at the highest level of accuracy, grade A, with a breach distance of 0 mm (no breach). The robotic-guided technique for S2AI screw placement is a reliable method to achieving pelvic fixation with low complication and revision rates. In addition, a high degree of accuracy can be achieved without relying on visible and tactile landmarks needed for the freehand technique or the additional radiation associated with fluoroscopic-guidance.


Subject(s)
Robotic Surgical Procedures , Sacrum , Bone Screws , Humans , Ilium/surgery , Retrospective Studies , Robotic Surgical Procedures/methods , Sacrum/surgery
19.
Spine Deform ; 10(2): 443-448, 2022 03.
Article in English | MEDLINE | ID: mdl-34743304

ABSTRACT

PURPOSE: Retrospective observational cohort study of primary adult spinal deformity (ASD) surgery during the transitional period prior to and after the implementation of Enhanced Surgical Recovery (ESR) at a single center. We sought to determine if ESR reduces in-hospital and 90-day post-operative opioid consumption for ASD surgery. METHODS: We evaluated patients undergoing primary ASD surgery in the transition period prior to (N = 29) and after (N = 56) adoption of ESR, comparing in-hospital and 90-day post-operative opioid consumption. Regression analysis was used to control for confounders including age, number of surgical levels, surgical approach, staged vs same-day surgery, insurance type and pre-op opioid use. RESULTS: Mean age of the cohort was 53 years with 57 (60%) females. Regression analysis showed that pre-operative opioid use and number of levels fused were associated with higher in-hospital and 90-day post-operative opioid consumption, while use of ESR was associated with lower in-hospital and 90-day post-operative opioid consumption. Secondary analysis showed that patients on ESR ambulated earlier (0.6 days vs 1.1, p = 0.028) and had their urinary catheter removed earlier (2.7 days vs 3.9, p = 0.006) compared to non-ESR patients. CONCLUSIONS: ESR was associated with a significantly decreased in-hospital and 90-day post-operative opioid consumption and earlier mobilization with earlier urinary catheter removal in patients undergoing primary ASD surgery. These results demonstrate ESR's potential to improve outcomes in ASD perioperative care. LEVEL OF EVIDENCE: 3.


Subject(s)
Analgesics, Opioid , Enhanced Recovery After Surgery , Adult , Analgesics, Opioid/therapeutic use , Cohort Studies , Female , Hospitals , Humans , Middle Aged , Neurosurgical Procedures , Retrospective Studies
20.
Spine (Phila Pa 1976) ; 47(1): 42-48, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34091564

ABSTRACT

STUDY DESIGN: Multicenter cohort. OBJECTIVE: To compare the robot time/screw, radiation exposure, robot abandonment, screw accuracy, and 90-day outcomes between robot-assisted percutaneous and robot-assisted open approach for short lumbar fusion (1- and 2-level). SUMMARY OF BACKGROUND DATA: There is conflicting literature on the superiority of robot-assisted minimally invasive spine surgery to open techniques. A large, multicenter study is needed to further elucidate the outcomes and complications between these two approaches. METHODS: We included adult patients (≥18 yrs old) who underwent robot-assisted short lumbar fusion surgery from 2015 to 2019 at four independent institutions. A propensity score matching algorithm was employed to control for the potential selection bias between percutaneous and open surgery. The minimum follow-up was 90 days after the index surgery. RESULTS: After propensity score matching, 310 patients remained. The mean (standard deviation) Charlson comorbidity index was 1.6 (1.5) and 53% of patients were female. The most common diagnoses included high-grade spondylolisthesis (grade >2) (48%), degenerative disc disease (22%), and spinal stenosis (25%), and the mean number of instrumented levels was 1.5(0.5). The operative time was longer in the open (198 min) versus the percutaneous group (167 min, P value = 0.007). However, the robot time/screw was similar between cohorts (P value > 0.05). The fluoroscopy time/ screw for percutaneous (14.4 s) was longer than the open group (10.1 s, P value = 0.021). The rates for screw exchange and robot abandonment were similar between groups (P value > 0.05). The estimated blood loss (open: 146 mL vs. percutaneous: 61.3 mL, P value < 0.001) and transfusion rate (open: 3.9% vs. percutaneous: 0%, P value = 0.013) were greater for the open group. The 90-day complication rate and mean length of stay were not different between cohorts (P value > 0.05). CONCLUSION: Percutaneous robot-assisted spine surgery may increase radiation exposure, but can achieve a shorter operative time and lower risk for intraoperative blood loss for short-lumbar fusion. Percutaneous approaches do not appear to have an advantage for other short-term postoperative outcomes. Future multicenter studies on longer fusion surgeries and the inclusion of patient-reported outcomes are needed.Level of Evidence: 3.


Subject(s)
Pedicle Screws , Radiation Exposure , Robotics , Spinal Fusion , Adult , Female , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Minimally Invasive Surgical Procedures , Spinal Fusion/adverse effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...