Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(6): eabo1095, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36753556

ABSTRACT

Many legal decisions center on the thoughts or perceptions of some idealized group of individuals, referred to variously as the "average person," "the typical consumer," or the "reasonable person." Substantial concerns exist, however, regarding the subjectivity and vulnerability to biases inherent in conventional means of assessing such responses, particularly the use of self-report evidence. Here, we addressed these concerns by complementing self-report evidence with neural data to inform the mental representations in question. Using an example from intellectual property law, we demonstrate that it is possible to construct a parsimonious neural index of visual similarity that can inform the reasonable person test of trademark infringement. Moreover, when aggregated across multiple participants, this index was able to detect experimenter-induced biases in self-report surveys in a sensitive and replicable fashion. Together, these findings potentially broaden the possibilities for neuroscientific data to inform legal decision-making across a range of settings.

2.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33990466

ABSTRACT

Real-world decisions are often open ended, with goals, choice options, or evaluation criteria conceived by decision-makers themselves. Critically, the quality of decisions may heavily rely on the generation of options, as failure to generate promising options limits, or even eliminates, the opportunity for choosing them. This core aspect of problem structuring, however, is largely absent from classical models of decision-making, thereby restricting their predictive scope. Here, we take a step toward addressing this issue by developing a neurally inspired cognitive model of a class of ill-structured decisions in which choice options must be self-generated. Specifically, using a model in which semantic memory retrieval is assumed to constrain the set of options available during valuation, we generate highly accurate out-of-sample predictions of choices across multiple categories of goods. Our model significantly and substantially outperforms models that only account for valuation or retrieval in isolation or those that make alternative mechanistic assumptions regarding their interaction. Furthermore, using neuroimaging, we confirm our core assumption regarding the engagement of, and interaction between, semantic memory retrieval and valuation processes. Together, these results provide a neurally grounded and mechanistic account of decisions with self-generated options, representing a step toward unraveling cognitive mechanisms underlying adaptive decision-making in the real world.


Subject(s)
Brain/physiology , Choice Behavior/physiology , Cognition/physiology , Decision Making/physiology , Models, Neurological , Adult , Brain/anatomy & histology , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Neuroimaging , Semantic Web
3.
J Cogn Neurosci ; 33(9): 1753-1765, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33054556

ABSTRACT

The contents of working memory must be maintained in the face of distraction, but updated when appropriate. To manage these competing demands of stability and flexibility, maintained representations in working memory are complemented by distinct gating mechanisms that selectively transmit information into and out of memory stores. The operations of such dopamine-dependent gating systems in the midbrain and striatum and their complementary dopamine-dependent memory maintenance operations in the cortex may therefore be dissociable. If true, selective increases in cortical dopamine tone should preferentially enhance maintenance over gating mechanisms. To test this hypothesis, tolcapone, a catechol-O-methyltransferase inhibitor that preferentially increases cortical dopamine tone, was administered in a randomized, double-blind, placebo-controlled, within-subject fashion to 49 participants who completed a hierarchical working memory task that varied maintenance and gating demands. Tolcapone improved performance in a condition with higher maintenance requirements and reduced gating demands, reflected in a reduction in the slope of RTs across the distribution. Resting-state fMRI data demonstrated that the degree to which tolcapone improved performance in individual participants correlated with increased connectivity between a region important for stimulus response mappings (left dorsal premotor cortex) and cortical areas implicated in visual working memory, including the intraparietal sulcus and fusiform gyrus. Together, these results provide evidence that augmenting cortical dopamine tone preferentially improves working memory maintenance.


Subject(s)
Dopamine , Memory, Short-Term , Catechol O-Methyltransferase , Catechol O-Methyltransferase Inhibitors/pharmacology , Double-Blind Method , Humans , Magnetic Resonance Imaging , Tolcapone
SELECTION OF CITATIONS
SEARCH DETAIL
...