Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(11): e0240056, 2020.
Article in English | MEDLINE | ID: mdl-33166314

ABSTRACT

We tested the hypothesis that segregation in wintering areas is associated with population differentiation in a sentinel North Pacific seabird, the rhinoceros auklet (Cerorhinca monocerata). We collected tissue samples for genetic analyses on five breeding colonies in the western Pacific Ocean (Japan) and on 13 colonies in the eastern Pacific Ocean (California to Alaska), and deployed light-level geolocator tags on 12 eastern Pacific colonies to delineate wintering areas. Geolocator tags were deployed previously on one colony in Japan. There was strong genetic differentiation between populations in the eastern vs. western Pacific Ocean, likely due to two factors. First, glaciation over the North Pacific in the late Pleistocene might have forced a southward range shift that historically isolated the eastern and western populations. And second, deep-ocean habitat along the northern continental shelf appears to act as a barrier to movement; abundant on both sides of the North Pacific, the rhinoceros auklet is virtually absent as a breeder in the Aleutian Islands and Bering Sea, and no tagged birds crossed the North Pacific in the non-breeding season. While genetic differentiation was strongest between the eastern vs. western Pacific, there was also extensive differentiation within both regional groups. In pairwise comparisons among the eastern Pacific colonies, the standardized measure of genetic differentiation (FꞌST) was negatively correlated with the extent of spatial overlap in wintering areas. That result supports the hypothesis that segregation in the non-breeding season is linked to genetic structure. Philopatry and a neritic foraging habit probably also contribute to the structuring. Widely distributed, vulnerable to anthropogenic stressors, and exhibiting extensive genetic structure, the rhinoceros auklet is fully indicative of the scope of the conservation challenges posed by seabirds.


Subject(s)
Animal Migration/physiology , Charadriiformes/genetics , Conservation of Natural Resources , Genetic Variation/genetics , Social Isolation , Animals , Birds , Breeding , Charadriiformes/physiology , Ecosystem , Genetics, Population , Geography , Pacific Ocean , Population Dynamics
2.
Environ Pollut ; 239: 215-222, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29655068

ABSTRACT

We assessed the potential role played by two vital Northeastern Pacific Ocean forage fishes, the Pacific sand lance (Ammodytes personatus) and Pacific herring (Clupea pallasii), as conduits for the vertical transfer of microfibres in food webs. We quantified the number of microfibres found in the stomachs of 734 sand lance and 205 herring that had been captured by an abundant seabird, the rhinoceros auklet (Cerorhinca monocerata). Sampling took place on six widely-dispersed breeding colonies in British Columbia, Canada, and Washington State, USA, over one to eight years. The North Pacific Ocean is a global hotspot for pollution, yet few sand lance (1.5%) or herring (2.0%) had ingested microfibres. In addition, there was no systematic relationship between the prevalence of microplastics in the fish stomachs vs. in waters around three of our study colonies (measured in an earlier study). Sampling at a single site (Protection Island, WA) in a single year (2016) yielded most (sand lance) or all (herring) of the microfibres recovered over the 30 colony-years of sampling involved in this study, yet no microfibres had been recovered there, in either species, in the previous year. We thus found no evidence that sand lance and herring currently act as major food-web conduits for microfibres along British Columbia's outer coast, nor that the local at-sea density of plastic necessarily determines how much plastic enters marine food webs via zooplanktivores. Extensive urban development around the Salish Sea probably explains the elevated microfibre loads in fishes collected on Protection Island, but we cannot account for the between-year variation. Nonetheless, the existence of such marked interannual variation indicates the importance of measuring year-to-year variation in microfibre pollution both at sea and in marine biota.


Subject(s)
Charadriiformes/metabolism , Environmental Pollution/analysis , Food Chain , Perciformes/metabolism , Plastics/analysis , Animals , British Columbia , Fishes , Pacific Ocean , Washington
3.
Mar Pollut Bull ; 86(1-2): 367-378, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25103902

ABSTRACT

Organochlorine contaminants in upper trophic-level consumers inhabiting Puget Sound are consistently higher than in those species inhabiting other west coast locations. We analyzed persistent organic pollutants (POPs) in the six most common fish prey of rhinoceros auklets breeding on Protection Island (Puget Sound), Tatoosh Island (WA coast), and Destruction Island (WA coast). Wet-weight concentrations of POPs ranged widely (PCBs: 1.6-25.0 ng/g; DDTs: 0.2-56.0 ng/g; PBDEs:

Subject(s)
Charadriiformes/physiology , DDT/metabolism , Environmental Pollutants/metabolism , Food Chain , Halogenated Diphenyl Ethers/metabolism , Polychlorinated Biphenyls/metabolism , Salmon/metabolism , Animals , Body Weight , Environmental Monitoring/methods , Environmental Monitoring/statistics & numerical data , Pacific Ocean , Washington
4.
Conserv Biol ; 27(6): 1190-200, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24299085

ABSTRACT

Marine hydrokinetic power projects will operate as marine environments change in response to increased atmospheric carbon dioxide concentrations. We considered how tidal power development and stressors resulting from climate change may affect Puget Sound species listed under the U.S. Endangered Species Act (ESA) and their food web. We used risk tables to assess the singular and combined effects of tidal power development and climate change. Tidal power development and climate change posed risks to ESA-listed species, and risk increased with incorporation of the effects of these stressors on predators and prey of ESA-listed species. In contrast, results of a model of strikes on ESA-listed species from turbine blades suggested that few ESA-listed species are likely to be killed by a commercial-scale tidal turbine array. We applied scenarios to a food web model of Puget Sound to explore the effects of tidal power and climate change on ESA-listed species using more quantitative analytical techniques. To simulate development of tidal power, we applied results of the blade strike model. To simulate environmental changes over the next 50 years, we applied scenarios of change in primary production, plankton community structure, dissolved oxygen, ocean acidification, and freshwater flooding events. No effects of tidal power development on ESA-listed species were detected from the food web model output, but the effects of climate change on them and other members of the food web were large. Our analyses exemplify how natural resource managers might assess environmental effects of marine technologies in ways that explicitly incorporate climate change and consider multiple ESA-listed species in the context of their ecological community. Estimación de los Efectos de Proyectos de Energía de las Mareas y el Cambio Climático sobre Especies Marinas Amenazadas y en Peligro y su Red Alimentaria.


Subject(s)
Aquatic Organisms/physiology , Conservation of Natural Resources/legislation & jurisprudence , Endangered Species , Food Chain , Power Plants , Climate Change , Models, Theoretical , Population Dynamics , Risk Assessment , United States , Water Movements
5.
Mar Pollut Bull ; 60(1): 39-50, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19828155

ABSTRACT

Derelict fishing gear remains in the marine environment for years, entangling, and killing marine organisms worldwide. Since 2002, hundreds of derelict nets containing over 32,000 marine animals have been recovered from Washington's inland waters. Analysis of 870 gillnets found many were derelict for years; most were recovered from northern Puget Sound and high-relief rocky habitats and were relatively small, of recent construction, in good condition, stretched open, and in relatively shallow water. Marine organisms documented in recovered gillnets included 31,278 invertebrates (76 species), 1036 fishes (22 species), 514 birds (16 species), and 23 mammals (4 species); 56% of invertebrates, 93% of fish, and 100% of birds and mammals were dead when recovered. For all taxa, mortality was generally associated with gillnet effectiveness (total area, age and condition, and suspension in the water). Mortality from derelict fishing gear is underestimated at recovery and may be important for species of economic and conservation concern.


Subject(s)
Ecotoxicology , Fisheries/instrumentation , Marine Biology , Water Pollutants/toxicity , Animals , Geography , Invertebrates/classification , Invertebrates/physiology , Risk Assessment , Time Factors , Vertebrates/classification , Vertebrates/physiology , Washington , Water Pollutants/adverse effects
6.
Ecol Appl ; 18(1): 246-57, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18372570

ABSTRACT

Catastrophic die-offs can have important consequences for vertebrate population growth and biodiversity, but catastrophic risks are not commonly incorporated into endangered-species recovery planning. Natural (e.g., landslides, floods) and anthropogenic (e.g., toxic leaks and spills) catastrophes pose a challenge for evolutionarily significant units (ESUs) of Pacific salmon listed under the Endangered Species Act and teetering at precariously low population levels. To spread risks among Puget Sound chinook salmon populations, recovery strategies for ESU-wide viability recommend at least two viable populations of historical life-history types in each of five geographic regions. We explored the likelihood of Puget Sound chinook salmon ESU persistence by examining spatial patterns of catastrophic risk and testing ESU viability recommendations for 22 populations of the threatened Puget Sound chinook salmon ESU. We combined geospatial information about catastrophic risks and chinook salmon distribution in Puget Sound watersheds to categorize relative catastrophic risks for each population. We then analyzed similarities in risk scores among regions and compared risk distributions among strategies: (1) population groups selected using the ESU viability recommendations of having populations spread out geographically and including historical life-history diversity, and (2) population groups selected at random. Risks from individual catastrophes varied among populations, but overall risk from catastrophes was similar within geographic regions. Recovery strategies that called for two viable populations in each of five geographic regions had lower risk than random strategies; strategies that included life-history diversity had even lower risks. Geographically distributed populations have varying catastrophic-risks profiles, thus identifying and reinforcing the spatial and life-history diversity critical for populations to respond to environmental change or needed to rescue severely depleted or extirpated populations. Recovery planning can promote viability of Pacific salmon ESUs across the landscape by incorporating catastrophic risk assessments.


Subject(s)
Conservation of Natural Resources , Salmon , Animals , Risk Assessment , Washington , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...