Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Eng Phys ; 38(11): 1159-1165, 2016 11.
Article in English | MEDLINE | ID: mdl-27639656

ABSTRACT

Functional electrical stimulation has been shown to be a safe and effective means of correcting foot drop of central neurological origin. Current surface-based devices typically consist of a single channel stimulator, a sensor for determining gait phase and a cuff, within which is housed the anode and cathode. The cuff-mounted electrode design reduces the likelihood of large errors in electrode placement, but the user is still fully responsible for selecting the correct stimulation level each time the system is donned. Researchers have investigated different approaches to automating aspects of setup and/or use, including recent promising work based on iterative learning techniques. This paper reports on the design and clinical evaluation of an electrode array-based FES system for the correction of drop foot, ShefStim. The paper reviews the design process from proof of concept lab-based study, through modelling of the array geometry and interface layer to array search algorithm development. Finally, the paper summarises two clinical studies involving patients with drop foot. The results suggest that the ShefStim system with automated setup produces results which are comparable with clinician setup of conventional systems. Further, the final study demonstrated that patients can use the system without clinical supervision. When used unsupervised, setup time was 14min (9min for automated search plus 5min for donning the equipment), although this figure could be reduced significantly with relatively minor changes to the design.


Subject(s)
Electric Stimulation Therapy/instrumentation , Aged , Electrodes , Equipment Design , Feasibility Studies , Female , Gait Disorders, Neurologic/therapy , Humans , Male , Middle Aged
2.
Arch Phys Med Rehabil ; 95(10): 1870-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24845222

ABSTRACT

OBJECTIVE: To investigate the feasibility of unsupervised community use of an array-based automated setup functional electrical stimulator for current foot-drop functional electrical stimulation (FES) users. DESIGN: Feasibility study. SETTING: Gait laboratory and community use. PARTICIPANTS: Participants (N=7) with diagnosis of unilateral foot-drop of central neurologic origin (>6mo) who were regular users of a foot-drop FES system (>3mo). INTERVENTION: Array-based automated setup FES system for foot-drop (ShefStim). MAIN OUTCOME MEASURES: Logged usage, logged automated setup times for the array-based automated setup FES system and diary recording of problems experienced, all collected in the community environment. Walking speed, ankle angles at initial contact, foot clearance during swing, and the Quebec User Evaluation of Satisfaction with Assistive Technology version 2.0 (QUEST version 2.0) questionnaire, all collected in the gait laboratory. RESULTS: All participants were able to use the array-based automated setup FES system. Total setup time took longer than participants' own FES systems, and automated setup time was longer than in a previous study of a similar system. Some problems were experienced, but overall, participants were as satisfied with this system as their own FES system. The increase in walking speed (N=7) relative to no stimulation was comparable between both systems, and appropriate ankle angles at initial contact (N=7) and foot clearance during swing (n=5) were greater with the array-based automated setup FES system. CONCLUSIONS: This study demonstrates that an array-based automated setup FES system for foot-drop can be successfully used unsupervised. Despite setup's taking longer and some problems, users are satisfied with the system and it would appear as effective, if not better, at addressing the foot-drop impairment. Further product development of this unique system, followed by a larger-scale and longer-term study, is required before firm conclusions about its efficacy can be reached.


Subject(s)
Electric Stimulation Therapy/instrumentation , Gait Disorders, Neurologic/therapy , Self Care , Walking/physiology , Adult , Aged , Ankle Joint/physiology , Electric Stimulation Therapy/methods , Electrodes , Equipment Failure , Feasibility Studies , Female , Gait/physiology , Gait Disorders, Neurologic/physiopathology , Humans , Male , Middle Aged , Monitoring, Ambulatory/instrumentation , Patient Satisfaction , Time Factors
3.
Med Eng Phys ; 35(1): 74-81, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22559959

ABSTRACT

Functional electrical stimulation is commonly used to correct drop foot following stroke or multiple sclerosis. This technique is successful for many patients, but previous studies have shown that a significant minority have difficulty identifying correct sites to place the electrodes in order to produce acceptable foot movement. Recently there has been some interest in the use of 'virtual electrodes', the process of stimulating a subset of electrodes chosen from an array, thus allowing the site of stimulation to be moved electronically rather than physically. We have developed an algorithm for automatically determining the best site of stimulation and tested it on a computer linked to a small, battery-powered prototype stimulator with 64 individual output channels. Stimulation was delivered via an 8×8 array adhered to the leg by high-resistivity self-adhesive hydrogel. Ten participants with stroke (ages 53-71 years) and 11 with MS (ages 40-80 years) were recruited onto the study and performed two walks of 10 m for each of the following conditions: own setup (PS), clinician setup (CS), automated setup (AS) and no stimulation (NS). The PS and CS conditions used the participant's own stimulator with two conventional electrodes; the AS condition used the new stimulator and algorithm. Outcome measures were walking speed, foot angle at initial contact and the Borg Rating of Perceived Exertion. Mean walking speed with no stimulation was 0.61 m/s; all FES setups significantly increased speed relative to this (AS p<0.05, PS p<0.01, CS p<0.01). Speed for PS (0.72 m/s) was faster than both AS (0.65 m/s, p<0.01) and CS (0.68 m/s, p<0.05). Frontal plane foot orientation at heel-strike was more neutral for AS (0.3° everted) than in the NS (11.2° inverted, p<0.01), PS (4.5° inverted, p<0.05) and CS (3.1° inverted, p<0.05) conditions. Dorsiflexion angles for AS (4.2°) were larger than NS (-3.0°, p<0.01), not different to PS (4.3°, p>0.05) and less dorsiflexed than CS (6.0°, p<0.05). This proof of principle study has demonstrated that automated setup of an array stimulator produces results broadly comparable to clinician setup. Slower walking speed for automated and clinician setups compared to the participants' own setup may be due to the participants' lack of familiarity with responses different to their usual setups. Automated setup using the method described here seems sufficiently reliable for future longer-term investigation outside the laboratory and may lead to FES becoming more viable for patients who, at present, have difficulty setting up conventional stimulators.


Subject(s)
Electric Stimulation/instrumentation , Gait Disorders, Neurologic/physiopathology , Gait Disorders, Neurologic/therapy , Gait , Laboratories , Adult , Aged , Aged, 80 and over , Automation , Electrodes , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...