Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf A Physicochem Eng Asp ; 397: 59-62, 2012 Mar 05.
Article in English | MEDLINE | ID: mdl-23185108

ABSTRACT

The first step required for the determination of surface tension from the shape of a captive bubble is the correct alignment of both the solid support against which the bubble floats and the camera used to record its profile. The solid support should be perpendicular to the gravitationally vertical axis. The camera used to visualize the bubble must be aligned to its axis of symmetry. Alignment of roll for both the camera and solid support is straightforward. For well-collimated light, yaw is unimportant. We show here how to align pitch, first adjusting the camera relative to the gravitational vertical, and then adjusting an agarose dome used as a ceiling above captive bubbles within the visual frame of reference.

2.
Langmuir ; 28(39): 14081-9, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22950373

ABSTRACT

Bubbles and droplets offer multiple advantages over Langmuir troughs for compressing interfacial films. Experiments, however, that manipulate films to maintain constant surface tension (γ) present problems because they require feedback. Measurements of bubbles and droplets calculate γ from the shape of the interface, and calculations in real time based on finding the Laplacian shape that best fits the interface can be difficult. Faster methods obtain γ from only the height and diameter, but the bubbles and droplets rest against a solid support, which obscures one section of the interface and complicates measurements of the height. The experiments here investigated a series of optical variables that affect the visualized location of the different surfaces for captive bubbles. The pitch of the support and camera as well as the collimation of illuminating light affected the accuracy of the measured dimensions. The wavelength of illumination altered the opacity of turbid subphases and hydrated gel used to form the solid support. The width of all visualized edges depended on the spectral width and collimation of the illuminating light. The intensity of illumination had little effect on the images as long as the grayscale remained within the dynamic range of the camera. With optimization of these optical factors, the width of all edges narrowed significantly. The surfaces away from the solid support approached the infinite sharpness of the physical interface. With these changes, the grayscale at the upper interface provided the basis for locating all surfaces, which improved real-time measurements based on the height and diameter.


Subject(s)
Gases/chemistry , Optical Phenomena , Particle Size , Surface Tension
3.
Biophys J ; 101(5): 1166-74, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21889454

ABSTRACT

In the companion article, we developed a modular scheme for representing the kinetics of transcription elongation by RNA polymerase. As an example of how to use these approaches, in this article we use a comprehensive modular model of this sort to fit experimental transcript elongation results obtained on the canonical tR2 template of phage λ by means of complementary bulk gel electrophoresis and surface plasmon resonance assays. The gel electrophoresis results, obtained in experiments quenched at various times after initiation of transcription, provide distributions of RNA lengths as a function of time. The surface plasmon resonance methods were used to monitor increases and decreases in the total mass of transcription elongation complexes in the same experiments. The different measures of transcription dynamics that these methods provide allow us to use them in combination to obtain a set of largely robust and well-defined kinetic parameters. The results show that our modular approach can be used to develop and test predictive kinetic schemes that can be fit to real transcription elongation data. They also suggest that these approaches can be extended to simulate the kinetics of other processes that involve the processive extension or shortening of nucleic acid chains and related systems of sequential branching reaction events.


Subject(s)
Models, Genetic , Transcription, Genetic , Electrophoresis , Kinetics , Surface Plasmon Resonance
4.
Biophys J ; 101(5): 1155-65, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21889453

ABSTRACT

Transcript elongation by RNA polymerase involves the sequential appearance of several alternative and off-pathway states of the transcript elongation complex (TEC), and this complicates modeling of the kinetics of the transcription elongation process. Based on solutions of the chemical master equation for such transcription systems as a function of time, we here develop a modular scheme for simulating such kinetic transcription data. This scheme deals explicitly with the problem of TEC desynchronization as transcript synthesis proceeds, and develops kinetic modules to permit the various alternative states of the TECs (paused states, backtracked states, arrested states, and terminated states) to be introduced one-by-one as needed. In this way, we can set up a comprehensive kinetic model of appropriate complexity to fit the known transcriptional properties of any given DNA template and set of experimental conditions, including regulatory cofactors. In the companion article, this modular scheme is successfully used to model kinetic transcription elongation data obtained by bulk-gel electrophoresis quenching procedures and real-time surface plasmon resonance methods from a template of known sequence that contains defined pause, stall, and termination sites.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Models, Genetic , Kinetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic
5.
J Mol Biol ; 384(1): 87-108, 2008 Dec 05.
Article in English | MEDLINE | ID: mdl-18922547

ABSTRACT

Protein N of bacteriophage lambda activates the lytic phase of phage development in infected Escherichia coli cells by suppressing the activity of transcriptional terminators that prevent the synthesis of essential phage proteins. N binds tightly to the boxB RNA hairpin located near the 5' end of the nascent pL and pR transcripts and induces an antitermination response in the RNA polymerase (RNAP) of elongation complexes located at terminators far downstream. Here we test an RNA looping model for this N-dependent "action at a distance" by cleaving the nascent transcript between boxB and RNAP during transcript elongation. Cleavage decreases antitermination, showing that an intact RNA transcript is required to stabilize the interaction of boxB-bound N with RNAP during transcription. In contrast, an antitermination complex that also contains Nus factors retains N-dependent activity after transcript cleavage, suggesting that these host factors further stabilize the N-RNAP interaction. Thus, the binding of N alone to RNAP is controlled by an RNA looping equilibrium, but after formation of the initial RNA loop and in the presence of Nus factors the system no longer equilibrates on the transcription time scale, meaning that the "range" of antitermination activity along the template in the full antitermination system is kinetically controlled by the dissociation rate of the stabilized N-RNAP complex. Theoretical calculations of nucleic acid end-to-end contact probabilities are used to estimate the local concentrations of boxB-bound N at elongation complexes poised at terminators, and are combined with N activity measurements at various boxB-to-terminator distances to obtain an intrinsic affinity (K(d)) of approximately 2 x 10(-5) M for the N-RNAP interaction. This RNA looping approach is extended to include the effects of N binding at nonspecific RNA sites on the transcript and the implications for transcription control in other regulatory systems are discussed.


Subject(s)
Bacteriophage lambda/metabolism , Codon, Terminator/genetics , Nucleic Acid Conformation , RNA, Viral/chemistry , Transcription, Genetic , Viral Regulatory and Accessory Proteins/metabolism , Binding Sites , DNA, Viral/metabolism , DNA-Directed RNA Polymerases/metabolism , Kinetics , Models, Genetic , Peptide Elongation Factors/metabolism , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Viral/metabolism , Templates, Genetic
6.
Proc Natl Acad Sci U S A ; 105(9): 3315-20, 2008 Mar 04.
Article in English | MEDLINE | ID: mdl-18299563

ABSTRACT

The decision to elongate or terminate the RNA chain at specific DNA template positions during transcription is kinetically regulated, but the methods used to measure the rates of these processes have not been sufficiently quantitative to permit detailed mechanistic analysis of the steps involved. Here, we use surface plasmon resonance (SPR) technology to monitor RNA transcription by Escherichia coli RNA polymerase (RNAP) in solution and in real time. We show that binding of RNAP to immobilized DNA templates to form active initiation or elongation complexes can be resolved and monitored by this method, and that changes during transcription that involve the gain or loss of bound mass, including the release of the sigma factor during the initiation-elongation transition, the synthesis of the RNA transcript, and the release of core RNAP and nascent RNA at intrinsic terminators, can all be observed. The SPR method also permits the discrimination of released termination products from paused and other intermediate complexes at terminators. We have used this approach to show that the rate constant for transcript release at intrinsic terminators tR2 and tR' is approximately 2-3 s(-1) and that the extent of release at these terminators is consistent with known termination efficiencies. Simulation techniques have been used to fit the measured parameters to a simple kinetic model of transcription and the implications of these results for transcriptional regulation are discussed.


Subject(s)
RNA, Bacterial/biosynthesis , Surface Plasmon Resonance/methods , Transcription, Genetic , DNA-Directed RNA Polymerases , Escherichia coli/genetics , Kinetics , Sigma Factor , Terminator Regions, Genetic , Transcription Initiation Site
7.
Nucleic Acids Res ; 35(21): 7197-208, 2007.
Article in English | MEDLINE | ID: mdl-17947320

ABSTRACT

Hybridization intensities of 30 distinct short duplex DNAs measured on spotted microarrays, were directly compared with thermodynamic stabilities measured in solution. DNA sequences were designed to promote formation of perfect match, or hybrid duplexes containing tandem mismatches. Thermodynamic parameters DeltaH degrees , DeltaS degrees and DeltaG degrees of melting transitions in solution were evaluated directly using differential scanning calorimetry. Quantitative comparison with results from 63 multiplex microarray hybridization experiments provided a linear relationship for perfect match and most mismatch duplexes. Examination of outliers suggests that both duplex length and relative position of tandem mismatches could be important factors contributing to observed deviations from linearity. A detailed comparison of measured thermodynamic parameters with those calculated using the nearest-neighbor model was performed. Analysis revealed the nearest-neighbor model generally predicts mismatch duplexes to be less stable than experimentally observed. Results also show the relative stability of a tandem mismatch is highly dependent on the identity of the flanking Watson-Crick (w/c) base pairs. Thus, specifying the stability contribution of a tandem mismatch requires consideration of the sequence identity of at least four base pair units (tandem mismatch and flanking w/c base pairs). These observations underscore the need for rigorous evaluation of thermodynamic parameters describing tandem mismatch stability.


Subject(s)
Base Pair Mismatch , DNA/chemistry , Oligonucleotide Array Sequence Analysis , Thermodynamics , Reproducibility of Results , Solutions
8.
J Mol Biol ; 361(2): 257-67, 2006 Aug 11.
Article in English | MEDLINE | ID: mdl-16843490

ABSTRACT

We have evaluated the thermodynamic parameters associated with cooperative cofilin binding to actin filaments, accounting for contributions of ion-linked equilibria, and determined the kinetic basis of cooperative cofilin binding. Ions weaken non-contiguous (isolated, non-cooperative) cofilin binding to an actin filament without affecting cooperative filament interactions. Non-contiguous cofilin binding is coupled to the dissociation of approximately 1.7 thermodynamically bound counterions. Counterion dissociation contributes approximately 40% of the total cofilin binding free energy (in the presence of 50 mM KCl). The non-contiguous and cooperative binding free energies are driven entirely by large, positive entropy changes, consistent with a cofilin-mediated increase in actin filament structural dynamics. The rate constant for cofilin binding to an isolated site on an actin filament is slow and likely to be limited by filament breathing. Cooperative cofilin binding arises from an approximately tenfold more rapid association rate constant and an approximately twofold slower dissociation rate constant. The more rapid association rate constant is presumably a consequence of cofilin-dependent changes in the average orientation of subdomain 2, subunit angular disorder and filament twist, which increase the accessibility of a neighboring cofilin-binding site on an actin filament. Cooperative association is more rapid than binding to an isolated site, but still slow for a second-order reaction, suggesting that cooperative binding is limited also by binding site accessibility. We suggest that the dissociation of actin-associated ions weakens intersubunit interactions in the actin filament lattice that enhance cofilin-binding site accessibility, favor cooperative binding and promote filament severing.


Subject(s)
Actin Cytoskeleton/metabolism , Cofilin 1/metabolism , Kinetics , Actin Cytoskeleton/chemistry , Animals , Cofilin 1/chemistry , Humans , Models, Molecular , Muscle, Skeletal/metabolism , Protein Binding , Rabbits , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...