Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 59(27): 10899-10903, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32297389

ABSTRACT

Glycopeptide antibiotics (GPAs) are important antibiotics that are highly challenging to synthesise due to their unique and heavily crosslinked structure. Given this, the synthetic production and diversification of this key compound class remains impractical. Furthermore, the possibility of biosynthetic reengineering of GPAs is not yet feasible since the selectivity of the biosynthetic crosslinking enzymes for altered substrates is largely unknown. We show that combining peptide synthesis with enzymatic cyclisation enables the formation of novel examples of GPAs and provides an indication of the utility of these crucial enzymes. By accessing the biosynthetic process in vitro, we identified peptide modifications that are enzymatically tolerated and can also reveal the mechanistic basis for substrate intolerance where present. Using this approach, we next specifically activated modified residues within GPAs for functionalisation at previously inaccessible positions, thereby offering the possibility of late-stage chemical functionalisation after GPA cyclisation is complete.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Glycopeptides/chemical synthesis , Anti-Bacterial Agents/chemistry , Cyclization , Glycopeptides/chemistry
2.
Chem Sci ; 8(9): 5992-6004, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28989629

ABSTRACT

Halogenation plays a significant role in the activity of the glycopeptide antibiotics (GPAs), although up until now the timing and therefore exact substrate involved was unclear. Here, we present results combined from in vivo and in vitro studies that reveal the substrates for the halogenase enzymes from GPA biosynthesis as amino acid residues bound to peptidyl carrier protein (PCP)-domains from the non-ribosomal peptide synthetase machinery: no activity was detected upon either free amino acids or PCP-bound peptides. Furthermore, we show that the selectivity of GPA halogenase enzymes depends upon both the structure of the bound amino acid and the PCP domain, rather than being driven solely via the PCP domain. These studies provide the first detailed understanding of how halogenation is performed during GPA biosynthesis and highlight the importance and versatility of trans-acting enzymes that operate during peptide assembly by non-ribosomal peptide synthetases.

3.
Biochemistry ; 56(9): 1239-1247, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28218515

ABSTRACT

The activity of glycopeptide antibiotics (GPAs) depends upon important structural modifications to their precursor heptapeptide backbone: specifically, the cytochrome P450-catalyzed oxidative cross-linking of aromatic side chains as well as the halogenation of specific residues within the peptide. The timing of halogenation and its effect on the cyclization of the peptide are currently unclear. Our results show that chlorination of peptide precursors improves their processing by P450 enzymes in vitro, which provides support for GPA halogenation occurring prior to peptide cyclization during nonribosomal peptide synthesis. We could also determine that the activity of the second enzyme in the oxidative cyclization cascade, OxyA, remains higher for chlorinated peptide substrates even when the biosynthetic GPA product possesses an altered chlorination pattern, which supports the role of the chlorine atoms in orienting the peptide substrate in the active site of these enzymes.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Biocatalysis/drug effects , Cytochrome P-450 Enzyme System/metabolism , Glycopeptides/chemistry , Glycopeptides/pharmacology , Halogenation , Catalytic Domain , Cyclization/drug effects , Cytochrome P-450 Enzyme System/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...