Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 2511, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33947858

ABSTRACT

Non-ribosomal peptide synthetases are important enzymes for the assembly of complex peptide natural products. Within these multi-modular assembly lines, condensation domains perform the central function of chain assembly, typically by forming a peptide bond between two peptidyl carrier protein (PCP)-bound substrates. In this work, we report structural snapshots of a condensation domain in complex with an aminoacyl-PCP acceptor substrate. These structures allow the identification of a mechanism that controls access of acceptor substrates to the active site in condensation domains. The structures of this complex also allow us to demonstrate that condensation domain active sites do not contain a distinct pocket to select the side chain of the acceptor substrate during peptide assembly but that residues within the active site motif can instead serve to tune the selectivity of these central biosynthetic domains.


Subject(s)
Amino Acids/chemistry , Catalytic Domain , Peptide Synthases/chemistry , Peptides/chemistry , Siderophores/chemistry , Amino Acid Sequence , Chromatography, High Pressure Liquid , Coenzyme A/chemistry , Crystallography, X-Ray , Gene Expression , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutation , Protein Domains , Protein Structure, Tertiary , Sequence Alignment , Siderophores/biosynthesis , Substrate Specificity , Thermobifida/chemistry , Thermobifida/metabolism
2.
FEBS J ; 288(2): 507-529, 2021 01.
Article in English | MEDLINE | ID: mdl-32359003

ABSTRACT

The biosynthesis of the glycopeptide antibiotics (GPAs) demonstrates the exceptional ability of nonribosomal peptide (NRP) synthesis to generate diverse and complex structures from an expanded array of amino acid precursors. Whilst the heptapeptide cores of GPAs share a conserved C terminus, including the aromatic residues involved cross-linking and that are essential for the antibiotic activity of GPAs, most structural diversity is found within the N terminus of the peptide. Furthermore, the origin of the (D)-stereochemistry of residue 1 of all GPAs is currently unclear, despite its importance for antibiotic activity. Given these important features, we have now reconstituted modules (M) 1-4 of the NRP synthetase (NRPS) assembly lines that synthesise the clinically relevant type IV GPA teicoplanin and the related compound A40926. Our results show that important roles in amino acid modification during the NRPS-mediated biosynthesis of GPAs can be ascribed to the actions of condensation domains present within these modules, including the incorporation of (D)-amino acids at position 1 of the peptide. Our results also indicate that hybrid NRPS assembly lines can be generated in a facile manner by mixing NRPS proteins from different systems and that uncoupling of peptide formation due to different rates of activity seen for NRPS modules can be controlled by varying the ratio of NRPS modules. Taken together, this indicates that NRPS assembly lines function as dynamic peptide assembly lines and not static megaenzyme complexes, which has significant implications for biosynthetic redesign of these important biosynthetic systems.


Subject(s)
Actinobacteria/metabolism , Actinoplanes/metabolism , Anti-Bacterial Agents/biosynthesis , Peptide Biosynthesis, Nucleic Acid-Independent , Peptide Synthases/genetics , Teicoplanin/analogs & derivatives , Teicoplanin/biosynthesis , Actinobacteria/genetics , Actinoplanes/genetics , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Engineering/methods , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Molecular Structure , Peptide Synthases/metabolism , Protein Domains , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Teicoplanin/chemistry
3.
ACS Chem Biol ; 15(9): 2444-2455, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32794694

ABSTRACT

Nonribosomal peptide synthesis is capable of utilizing a wide range of amino acid residues due to the selectivity of adenylation (A)-domains. Changing the selectivity of A-domains could lead to new bioactive nonribosomal peptides, although remodeling efforts of A-domains are often unsuccessful. Here, we explored and successfully reengineered the specificity of the module 3 A-domain from glycopeptide antibiotic biosynthesis to change the incorporation of 3,5-dihydroxyphenylglycine into 4-hydroxyphenylglycine. These engineered A-domains remain selective in a functioning peptide assembly line even under substrate competition conditions and indicate a possible application of these for the future redesign of GPA biosynthesis.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Peptide Synthases/metabolism , Teicoplanin/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , Peptide Biosynthesis, Nucleic Acid-Independent , Peptide Synthases/genetics , Protein Domains/genetics , Protein Engineering , Substrate Specificity/genetics
4.
Chem Sci ; 11(35): 9443-9458, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-34094211

ABSTRACT

Non-ribosomal peptide synthesis is an important biosynthesis pathway in secondary metabolism. In this study we have investigated modularisation and redesign strategies for the glycopeptide antibiotic teicoplanin. Using the relocation or exchange of domains within the NRPS modules, we have identified how to initiate peptide biosynthesis and explored the requirements for the functional reengineering of both the condensation/adenylation domain and epimerisation/condensation domain interfaces. We have also demonstrated strategies that ensure communication between isolated NRPS modules, leading to new peptide assembly pathways. This provides important insights into NRPS reengineering of glycopeptide antibiotic biosynthesis and has broad implications for the redesign of other NRPS systems.

5.
J Org Chem ; 85(3): 1537-1547, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31774678

ABSTRACT

The glycopeptide antibiotics (GPAs) serve as an important example of the interplay of two powerful enzymatic classes in secondary metabolism: the coupling of nonribosomal peptide synthesis with oxidative aromatic cross-linking performed by cytochrome P450 enzymes. This interplay is responsible for the generation of the highly cross-linked peptide aglycone at the core of this compound class that is required for antibiotic activity and, as such, serves as an important point for the exploration of chemoenzymatic routes to understand the selectivity and mechanism of this complex cascade. Here, we demonstrate the effective reconstitution of enzymatic tetracyclization of synthetic teicoplanin-derived heptapeptides and furthermore discern the importance of the OxyE enzyme in maintaining effective cyclization of such peptides bearing 3,5-dihydroxyphenylglycine residues at position 3 in their structures. These results demonstrate the value of chemically synthesized probes for the elucidation of the enzyme mechanism underpinning the complex process of GPA cyclization and furthermore show the utility of the technique for probing the cyclization of non-natural GPA peptides by these powerful biosynthetic enzymes.


Subject(s)
Glycopeptides , Teicoplanin , Anti-Bacterial Agents , Cyclization , Peptides
6.
J Proteome Res ; 19(1): 204-211, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31657565

ABSTRACT

Relative label-free quantification (LFQ) of shotgun proteomics data using precursor (MS1) signal intensities is one of the most commonly used applications to comprehensively and globally quantify proteins across biological samples and conditions. Due to the popularity of this technique, several software packages, such as the popular software suite MaxQuant, have been developed to extract, analyze, and compare spectral features and to report quantitative information of peptides, proteins, and even post-translationally modified sites. However, there is still a lack of accessible tools for the interpretation and downstream statistical analysis of these complex data sets, in particular for researchers and biologists with no or only limited experience in proteomics, bioinformatics, and statistics. We have therefore created LFQ-Analyst, which is an easy-to-use, interactive web application developed to perform differential expression analysis with "one click" and to visualize label-free quantitative proteomic data sets preprocessed with MaxQuant. LFQ-Analyst provides a wealth of user-analytic features and offers numerous publication-quality result graphics to facilitate statistical and exploratory analysis of label-free quantitative data sets. LFQ-Analyst, including an in-depth user manual, is freely available at https://bioinformatics.erc.monash.edu/apps/LFQ-Analyst .


Subject(s)
Proteomics , Software , Computational Biology , Peptides , Proteins
7.
ACS Chem Biol ; 14(12): 2932-2941, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31774267

ABSTRACT

ß-Hydroxylation plays an important role in the nonribosomal peptide biosynthesis of many important natural products, including bleomycin, chloramphenicol, and the glycopeptide antibiotics (GPAs). Various oxidative enzymes have been implicated in such a process, with the mechanism of incorporation varying from installation of hydroxyl groups in amino acid precursors prior to adenylation to direct amino acid oxidation during peptide assembly. In this work, we demonstrate the in vitro utility and scope of the unusual nonheme diiron monooxygenase CmlA from chloramphenicol biosynthesis for the ß-hydroxylation of a diverse range of carrier protein bound substrates by adapting this enzyme as a non-native trans-acting enzyme within NRPS-mediated GPA biosynthesis. The results from our study show that CmlA has a broad substrate specificity for modified phenylalanine/tyrosine residues as substrates and can be used in a practical strategy to functionally cross complement compatible NRPS biosynthesis pathways in vitro.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Chloramphenicol/biosynthesis , Glycopeptides/biosynthesis , Iron/metabolism , Mixed Function Oxygenases/metabolism , Amino Acid Sequence , Hydroxylation , Mixed Function Oxygenases/chemistry , Substrate Specificity , Teicoplanin/biosynthesis , Tyrosine/metabolism
8.
Org Lett ; 21(21): 8635-8640, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31603691

ABSTRACT

Natural products are the greatest source of antimicrobial agents, although their structural complexity often renders synthetic production and diversification of key classes impractical. One pertinent example is the glycopeptide antibiotics (GPAs), which are highly challenging to synthesize due to their heavily cross-linked structures. Here, we report an optimized method that generates >75% tricyclic peptides from synthetic precursors in order to explore the acceptance of novel GPA precursor peptides by these key existent biosynthetic enzymes.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/chemistry , Glycopeptides/biosynthesis , Glycopeptides/chemistry , Cyclization
9.
Nat Commun ; 10(1): 2613, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31197182

ABSTRACT

Kistamicin is a divergent member of the glycopeptide antibiotics, a structurally complex class of important, clinically relevant antibiotics often used as the last resort against resistant bacteria. The extensively crosslinked structure of these antibiotics that is essential for their activity makes their chemical synthesis highly challenging and limits their production to bacterial fermentation. Kistamicin contains three crosslinks, including an unusual 15-membered A-O-B ring, despite the presence of only two Cytochrome P450 Oxy enzymes thought to catalyse formation of such crosslinks within the biosynthetic gene cluster. In this study, we characterise the kistamicin cyclisation pathway, showing that the two Oxy enzymes are responsible for these crosslinks within kistamicin and that they function through interactions with the X-domain, unique to glycopeptide antibiotic biosynthesis. We also show that the kistamicin OxyC enzyme is a promiscuous biocatalyst, able to install multiple crosslinks into peptides containing phenolic amino acids.


Subject(s)
Actinobacteria/metabolism , Anti-Bacterial Agents/metabolism , Biosynthetic Pathways/genetics , Glycopeptides/biosynthesis , Peptides/metabolism , Actinobacteria/genetics , Anti-Bacterial Agents/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biocatalysis , Cyclization/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Glycopeptides/chemistry , Multigene Family , Peptides/chemistry
10.
Chem Sci ; 10(41): 9466-9482, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-32055321

ABSTRACT

Non-ribosomal peptide biosynthesis produces highly diverse natural products through a complex cascade of enzymatic reactions that together function with high selectivity to produce bioactive peptides. The modification of non-ribosomal peptide synthetase (NRPS)-bound amino acids can introduce significant structural diversity into these peptides and has exciting potential for biosynthetic redesign. However, the control mechanisms ensuring selective modification of specific residues during NRPS biosynthesis have previously been unclear. Here, we have characterised the incorporation of the non-proteinogenic amino acid 3-chloro-ß-hydroxytyrosine during glycopeptide antibiotic (GPA) biosynthesis. Our results demonstrate that the modification of this residue by trans-acting enzymes is controlled by the selectivity of the upstream condensation domain responsible for peptide synthesis. A proofreading thioesterase works together with this process to ensure that effective peptide biosynthesis proceeds even when the selectivity of key amino acid activation domains within the NRPS is low. Furthermore, the exchange of condensation domains with altered amino acid specificities allows the modification of such residues within NRPS biosynthesis to be controlled, which will doubtless prove important for reengineering of these assembly lines. Taken together, our results indicate the importance of the complex interplay of NRPS domains and trans-acting enzymes to ensure effective GPA biosynthesis, and in doing so reveals a process that is mechanistically comparable to the hydrolytic proofreading function of tRNA synthetases in ribosomal protein synthesis.

11.
J Proteome Res ; 17(4): 1485-1499, 2018 04 06.
Article in English | MEDLINE | ID: mdl-29508616

ABSTRACT

Macrophages, which accumulate in tissues during inflammation, may be polarized toward pro-inflammatory (M1) or tissue reparative (M2) phenotypes. The balance between these phenotypes can have a substantial influence on the outcome of inflammatory diseases such as atherosclerosis. Improved biomarkers of M1 and M2 macrophages would be beneficial for research, diagnosis, and monitoring the effects of trial therapeutics in such diseases. To identify novel biomarkers, we have characterized the global proteomes of THP-1 macrophages polarized to M1 and M2 states in comparison with unpolarized (M0) macrophages. M1 polarization resulted in increased expression of numerous pro-inflammatory proteins including the products of 31 genes under the transcriptional control of interferon regulatory factor 1 (IRF-1). In contrast, M2 polarization identified proteins regulated by components of the transcription factor AP-1. Among the most highly upregulated proteins under M1 conditions were the three interferon-induced proteins with tetratricopeptide repeats (IFITs: IFIT1, IFIT2, and IFIT3), which function in antiviral defense. Moreover, IFIT1, IFIT2, and IFIT3 mRNA were strongly upregulated in M1 polarized human primary macrophages and IFIT1 was also expressed in a subset of macrophages in aortic sinus and brachiocephalic artery sections from atherosclerotic ApoE-/- mice. On the basis of these results, we propose that IFITs may serve as useful markers of atherosclerosis and potentially other inflammatory diseases.


Subject(s)
Interferon Regulatory Factor-1/genetics , Macrophages/immunology , Proteins/analysis , Proteomics/methods , Tetratricopeptide Repeat , Animals , Atherosclerosis/diagnosis , Atherosclerosis/pathology , Biomarkers/analysis , Humans , Inflammation/diagnosis , Inflammation/pathology , Macrophages/chemistry , Mice , Mice, Knockout , Proteins/genetics , THP-1 Cells , Up-Regulation/genetics
12.
Mol Cell Proteomics ; 17(6): 1170-1183, 2018 06.
Article in English | MEDLINE | ID: mdl-29463595

ABSTRACT

Prostate cancer is a common cause of cancer-related death in men. E6AP (E6-Associated Protein), an E3 ubiquitin ligase and a transcription cofactor, is elevated in a subset of prostate cancer patients. Genetic manipulations of E6AP in prostate cancer cells expose a role of E6AP in promoting growth and survival of prostate cancer cells in vitro and in vivo However, the effect of E6AP on prostate cancer cells is broad and it cannot be explained fully by previously identified tumor suppressor targets of E6AP, promyelocytic leukemia protein and p27. To explore additional players that are regulated downstream of E6AP, we combined a transcriptomic and proteomic approach. We identified and quantified 16,130 transcripts and 7,209 proteins in castration resistant prostate cancer cell line, DU145. A total of 2,763 transcripts and 308 proteins were significantly altered on knockdown of E6AP. Pathway analyses supported the known phenotypic effects of E6AP knockdown in prostate cancer cells and in parallel exposed novel potential links of E6AP with cancer metabolism, DNA damage repair and immune response. Changes in expression of the top candidates were confirmed using real-time polymerase chain reaction. Of these, clusterin, a stress-induced chaperone protein, commonly deregulated in prostate cancer, was pursued further. Knockdown of E6AP resulted in increased clusterin transcript and protein levels in vitro and in vivo Concomitant knockdown of E6AP and clusterin supported the contribution of clusterin to the phenotype induced by E6AP. Overall, results from this study provide insight into the potential biological pathways controlled by E6AP in prostate cancer cells and identifies clusterin as a novel target of E6AP.


Subject(s)
Clusterin/genetics , Neoplasm Proteins/genetics , Prostatic Neoplasms/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Cell Line , Clusterin/metabolism , Gene Knockdown Techniques , Humans , Male , Mice , Prostatic Neoplasms/genetics , Proteomics , Transcriptome
13.
Mol Microbiol ; 106(1): 142-156, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28752534

ABSTRACT

The assembly of proteins into bacterial outer membranes is a key cellular process that we are only beginning to understand, mediated by the ß-barrel assembly machinery (BAM). Two crucial elements of that machinery are the core BAM complex and the translocation and assembly module (TAM), with each containing a member of the Omp85 superfamily of proteins: BamA in the BAM complex, TamA in the TAM. Here, we used the substrate protein FimD as a model to assess the selectivity of substrate interactions for the TAM relative to those of the BAM complex. A peptide scan revealed that TamA and BamA bind the ß-strands of FimD, and do so selectively. Chemical cross-linking and molecular dynamics are consistent with this interaction taking place between the first and last strand of the TamA barrel domain, providing the first experimental evidence of a lateral gate in TamA: a structural element implicated in membrane protein assembly. We suggest that the lateral gates in TamA and BamA provide different environments for substrates to engage, with the differences observed here beginning to address how the TAM can be more effective than the BAM complex in the folding of some substrate proteins.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Protein Transport/physiology , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Molecular Dynamics Simulation , Peptides/metabolism , Protein Folding , Protein Structural Elements/physiology , Structure-Activity Relationship , Substrate Specificity/genetics , Substrate Specificity/physiology
14.
Neurotox Res ; 31(1): 11-19, 2017 01.
Article in English | MEDLINE | ID: mdl-27401825

ABSTRACT

Russell's vipers are snakes of major medical importance in Asia. Russell's viper (Daboia russelii) envenoming in Sri Lanka and South India leads to a unique, mild neuromuscular paralysis, not seen in other parts of the world where the snake is found. This study aimed to identify and pharmacologically characterise the major neurotoxic components of Sri Lankan Russell's viper venom. Venom was fractionated using size exclusion chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC). In vitro neurotoxicities of the venoms, fractions and isolated toxins were measured using chick biventer and rat hemidiaphragm preparations. A phospholipase A2 (PLA2) toxin, U1-viperitoxin-Dr1a (13.6 kDa), which constitutes 19.2 % of the crude venom, was isolated and purified using HPLC. U1-viperitoxin-Dr1a produced concentration-dependent in vitro neurotoxicity abolishing indirect twitches in the chick biventer nerve-muscle preparation, with a t 90 of 55 ± 7 min only at 1 µM. The toxin did not abolish responses to acetylcholine and carbachol indicating pre-synaptic neurotoxicity. Venom, in the absence of U1-viperitoxin-Dr1a, did not induce in vitro neurotoxicity. Indian polyvalent antivenom, at the recommended concentration, only partially prevented the neurotoxic effects of U1-viperitoxin-Dr1a. Liquid chromatography mass spectrometry analysis confirmed that U1-viperitoxin-Dr1a was the basic S-type PLA2 toxin previously identified from this venom (NCBI-GI: 298351762; SwissProt: P86368). The present study demonstrates that neurotoxicity following Sri Lankan Russell's viper envenoming is primarily due to the pre-synaptic neurotoxin U1-viperitoxin-Dr1a. Mild neurotoxicity observed in severely envenomed Sri Lankan Russell's viper bites is most likely due to the low potency of U1-viperitoxin-Dr1a, despite its high relative abundance in the venom.


Subject(s)
Daboia , Neurotoxins/toxicity , Viper Venoms/toxicity , Acetylcholine/pharmacology , Amino Acid Sequence , Animals , Antivenins/pharmacology , Carbachol/pharmacology , Chickens , Dose-Response Relationship, Drug , Female , Male , Muscles/drug effects , Neuromuscular Junction/drug effects , Neurotoxins/chemistry , Neurotoxins/genetics , Neurotoxins/isolation & purification , Neurotransmitter Agents/pharmacology , Peripheral Nerves/drug effects , Presynaptic Terminals/drug effects , Rats , Snake Bites , Tissue Culture Techniques , Viper Venoms/chemistry , Viper Venoms/genetics , Viper Venoms/isolation & purification
15.
Nat Commun ; 7: 10588, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26841934

ABSTRACT

The membrane attack complex (MAC)/perforin-like protein complement component 9 (C9) is the major component of the MAC, a multi-protein complex that forms pores in the membrane of target pathogens. In contrast to homologous proteins such as perforin and the cholesterol-dependent cytolysins (CDCs), all of which require the membrane for oligomerisation, C9 assembles directly onto the nascent MAC from solution. However, the molecular mechanism of MAC assembly remains to be understood. Here we present the 8 Å cryo-EM structure of a soluble form of the poly-C9 component of the MAC. These data reveal a 22-fold symmetrical arrangement of C9 molecules that yield an 88-strand pore-forming ß-barrel. The N-terminal thrombospondin-1 (TSP1) domain forms an unexpectedly extensive part of the oligomerisation interface, thus likely facilitating solution-based assembly. These TSP1 interactions may also explain how additional C9 subunits can be recruited to the growing MAC subsequent to membrane insertion.


Subject(s)
Complement C9/ultrastructure , Complement Membrane Attack Complex/ultrastructure , Polymers , Cryoelectron Microscopy , Humans , Models, Molecular , Molecular Structure
16.
Cell Metab ; 22(6): 1078-89, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26603189

ABSTRACT

Liver steatosis is associated with the development of insulin resistance and the pathogenesis of type 2 diabetes. We tested the hypothesis that protein signals originating from steatotic hepatocytes communicate with other cells to modulate metabolic phenotypes. We show that the secreted factors from steatotic hepatocytes induce pro-inflammatory signaling and insulin resistance in cultured cells. Next, we identified 168 hepatokines, of which 32 were differentially secreted in steatotic versus non-steatotic hepatocytes. Targeted analysis showed that fetuin B was increased in humans with liver steatosis and patients with type 2 diabetes. Fetuin B impaired insulin action in myotubes and hepatocytes and caused glucose intolerance in mice. Silencing of fetuin B in obese mice improved glucose tolerance. We conclude that the protein secretory profile of hepatocytes is altered with steatosis and is linked to inflammation and insulin resistance. Therefore, preventing steatosis may limit the development of dysregulated glucose metabolism in settings of overnutrition.


Subject(s)
Fatty Liver/pathology , Fetuin-B/metabolism , Glucose/metabolism , Adult , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Cells, Cultured , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat , Fatty Liver/complications , Fatty Liver/metabolism , Female , Fetuin-B/antagonists & inhibitors , Fetuin-B/genetics , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , I-kappa B Kinase/metabolism , Insulin Resistance , JNK Mitogen-Activated Protein Kinases/metabolism , Liver/enzymology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Middle Aged , RNA Interference , Up-Regulation/drug effects
17.
Article in English | MEDLINE | ID: mdl-26528441

ABSTRACT

Bacterial proteomic studies frequently use strains cultured in synthetic liquid media over many generations. It is uncertain whether bacterial proteins expressed under these conditions will be the same as the repertoire found in natural environments, or when bacteria are infecting a host organism. Thus, genomic and proteomic characterization of bacteria derived from the host environment in comparison to reference strains grown in the lab, should aid understanding of pathogenesis. Isolates of Corynebacterium pseudotuberculosis were obtained from the lymph nodes of three naturally infected sheep and compared to a laboratory reference strain using bottom-up proteomics, after whole genome sequencing of each of the field isolates. These comparisons were performed following growth in liquid media that allowed us to reach the required protein amount for proteomic analysis. Over 1350 proteins were identified in the isolated strains, from which unique proteome features were revealed. Several of the identified proteins demonstrated a significant abundance difference in the field isolates compared to the reference strain even though there were no obvious differences in the DNA sequence of the corresponding gene or in nearby non-coding DNA. Higher abundance in the field isolates was observed for proteins related to hypoxia and nutrient deficiency responses as well as to thiopeptide biosynthesis.


Subject(s)
Bacterial Proteins/analysis , Corynebacterium Infections/veterinary , Corynebacterium pseudotuberculosis/chemistry , Corynebacterium pseudotuberculosis/isolation & purification , Lymph Nodes/microbiology , Proteome/analysis , Sheep Diseases/microbiology , Animals , Corynebacterium Infections/microbiology , Sheep
18.
J Proteome Res ; 14(9): 3415-31, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26076068

ABSTRACT

This paper summarizes the recent activities of the Chromosome-Centric Human Proteome Project (C-HPP) consortium, which develops new technologies to identify yet-to-be annotated proteins (termed "missing proteins") in biological samples that lack sufficient experimental evidence at the protein level for confident protein identification. The C-HPP also aims to identify new protein forms that may be caused by genetic variability, post-translational modifications, and alternative splicing. Proteogenomic data integration forms the basis of the C-HPP's activities; therefore, we have summarized some of the key approaches and their roles in the project. We present new analytical technologies that improve the chemical space and lower detection limits coupled to bioinformatics tools and some publicly available resources that can be used to improve data analysis or support the development of analytical assays. Most of this paper's content has been compiled from posters, slides, and discussions presented in the series of C-HPP workshops held during 2014. All data (posters, presentations) used are available at the C-HPP Wiki (http://c-hpp.webhosting.rug.nl/) and in the Supporting Information.


Subject(s)
Chromosome Mapping , Proteins/genetics , Proteome , Chromatography, Liquid , Genomics , Humans , Proteins/chemistry , Tandem Mass Spectrometry
19.
ACS Nano ; 7(6): 5558-67, 2013 Jun 25.
Article in English | MEDLINE | ID: mdl-23713907

ABSTRACT

Nanoporous polymer particles (NPPs) prepared by mesoporous silica templating show promise as a new class of versatile drug/gene delivery vehicles owning to their high payload capacity, functionality, and responsiveness. Understanding the cellular dynamics of such particles, including uptake, intracellular trafficking, and distribution, is an important requirement for their development as therapeutic carriers. Herein, we examine the spatiotemporal map of the cellular processing of submicrometer-sized disulfide-bonded poly(methacrylic acid) (PMASH) NPPs in HeLa cells using both flow cytometry and fluorescence microscopy. The data show that the PMASH NPPs are transported from the early endosomes to the lysosomes within a few minutes. Upon cell division, the lysosome-enclosed PMASH NPPs are distributed asymmetrically between two daughter cells. Statistical analysis of cells during cytokinesis suggests that partitioning of particles is biased with an average segregation deviation of 60%. Further, two-dimensional difference gel electrophoresis (2D-DIGE) analysis reveals that 127 out of 3059 identified spots are differentially regulated upon exposure to the PMASH NPPs. Pathway analysis of the proteomics data suggests that ubiquitylation, a reversible modification of cellular proteins with ubiquitin, plays a central role in overall cellular responses to the particles. These results provide important insights into the cellular dynamics and heterogeneity of NPPs, as well as the mechanisms that regulate the motility of these particles within cells, all of which have important implications for drug susceptibility characteristics in cancer cells using particle-based carriers.


Subject(s)
Intracellular Space/metabolism , Mitosis , Nanoparticles , Polymethacrylic Acids/chemistry , Polymethacrylic Acids/metabolism , Biological Transport , Fluorescent Dyes/metabolism , HeLa Cells , Humans
20.
J Proteome Res ; 12(1): 172-8, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23215242

ABSTRACT

In 2010, the Human Proteome Organization launched the Human Proteome Project (HPP), aimed at identifying and characterizing the proteome of the human body. To support complete coverage, one arm of the project will take a gene- or chromosomal-centric strategy (C-HPP) aimed at identifying at least one protein product from each protein-coding gene. Despite multiple large international biological databases housing genomic and protein data, there is currently no single system that integrates updated pertinent information from each of these data repositories and assembles the information into a searchable format suitable for the type of global proteomics effort proposed by the C-HPP. We have undertaken the goal of producing a data integration and analysis software system and browser for the C-HPP effort and of making data collections from this resource discoverable through metadata repositories, such as Australian National Data Service's Research Data Australia. Here we present our vision and progress toward the goal of developing a comprehensive data integration and analysis software tool that provides a snapshot of currently available proteomic related knowledge around each gene product, which will ultimately assist in analyzing biological function and the study of human physiology in health and disease.


Subject(s)
Databases, Protein , Internet , Proteome , Australia , Genome, Human , Humans , Proteome/genetics , Proteome/metabolism , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...