Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 7(1): 4699, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28680117

ABSTRACT

Profiling of wild and laboratory tsetse populations using 16S rRNA gene amplicon sequencing allowed us to examine whether the "Wigglesworthia-Sodalis-Wolbachia dogma" operates across species and populations. The most abundant taxa, in wild and laboratory populations, were Wigglesworthia (the primary endosymbiont), Sodalis and Wolbachia as previously characterized. The species richness of the microbiota was greater in wild than laboratory populations. Spiroplasma was identified as a new symbiont exclusively in Glossina fuscipes fuscipes and G. tachinoides, members of the palpalis sub-group, and the infection prevalence in several laboratory and natural populations was surveyed. Multi locus sequencing typing (MLST) analysis identified two strains of tsetse-associated Spiroplasma, present in G. f. fuscipes and G. tachinoides. Spiroplasma density in G. f. fuscipes larva guts was significantly higher than in guts from teneral and 15-day old male and female adults. In gonads of teneral and 15-day old insects, Spiroplasma density was higher in testes than ovaries, and was significantly higher density in live versus prematurely deceased females indicating a potentially mutualistic association. Higher Spiroplasma density in testes than in ovaries was also detected by fluorescent in situ hybridization in G. f. fuscipes.


Subject(s)
Enterobacteriaceae/isolation & purification , Spiroplasma/isolation & purification , Tsetse Flies/microbiology , Tsetse Flies/parasitology , Wigglesworthia/isolation & purification , Wolbachia/isolation & purification , Animals , Animals, Wild/microbiology , Animals, Wild/parasitology , Enterobacteriaceae/classification , Enterobacteriaceae/genetics , Enterobacteriaceae/physiology , Female , High-Throughput Nucleotide Sequencing , Male , Multilocus Sequence Typing , Ovary/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, RNA , Species Specificity , Spiroplasma/classification , Spiroplasma/genetics , Spiroplasma/physiology , Symbiosis , Testis/microbiology , Tissue Distribution , Tsetse Flies/classification , Tsetse Flies/growth & development , Wigglesworthia/classification , Wigglesworthia/genetics , Wigglesworthia/physiology , Wolbachia/classification , Wolbachia/genetics , Wolbachia/physiology
2.
Nature ; 435(7038): 43-57, 2005 May 05.
Article in English | MEDLINE | ID: mdl-15875012

ABSTRACT

The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes of this organism encode approximately 12,500 predicted proteins, a high proportion of which have long, repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal ribosomal DNA (rDNA) element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal-fungal lineage after the plant-animal split, but Dictyostelium seems to have retained more of the diversity of the ancestral genome than have plants, animals or fungi.


Subject(s)
Dictyostelium/genetics , Genome , Genomics , Social Behavior , ATP-Binding Cassette Transporters/genetics , Animals , Base Composition , Cell Adhesion/genetics , Cell Movement/genetics , Centromere/genetics , Conserved Sequence/genetics , DNA Transposable Elements/genetics , DNA, Ribosomal/genetics , Dictyostelium/cytology , Dictyostelium/enzymology , Dictyostelium/metabolism , Eukaryotic Cells/metabolism , Gene Duplication , Gene Transfer, Horizontal/genetics , Humans , Molecular Sequence Data , Phylogeny , Proteome , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , RNA, Transfer/genetics , Repetitive Sequences, Nucleic Acid/genetics , Sequence Analysis, DNA , Signal Transduction/genetics , Telomere/genetics
3.
Nature ; 419(6906): 527-31, 2002 Oct 03.
Article in English | MEDLINE | ID: mdl-12368867

ABSTRACT

Since the sequencing of the first two chromosomes of the malaria parasite, Plasmodium falciparum, there has been a concerted effort to sequence and assemble the entire genome of this organism. Here we report the sequence of chromosomes 1, 3-9 and 13 of P. falciparum clone 3D7--these chromosomes account for approximately 55% of the total genome. We describe the methods used to map, sequence and annotate these chromosomes. By comparing our assemblies with the optical map, we indicate the completeness of the resulting sequence. During annotation, we assign Gene Ontology terms to the predicted gene products, and observe clustering of some malaria-specific terms to specific chromosomes. We identify a highly conserved sequence element found in the intergenic region of internal var genes that is not associated with their telomeric counterparts.


Subject(s)
DNA, Protozoan , Plasmodium falciparum/genetics , Animals , Base Sequence , Chromosomes , Genes, Protozoan , Genome, Protozoan , Molecular Sequence Data , Multigene Family , Proteome , Protozoan Proteins/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...