Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Heredity (Edinb) ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918612

ABSTRACT

Many species exhibit distinct phenotypic classes, such as sexes in dioecious species or castes in social species. The evolution of these classes is affected by the genetic architecture governing traits shared between phenotypes. However, estimates of the genetic and environmental factors contributing to phenotypic variation in distinct classes have rarely been examined. We studied the genetic architecture underlying morphological traits in phenotypic classes in the social wasp Vespula maculifrons. Our data revealed patriline effects on a few traits, indicating weak genetic influences on caste phenotypic variation. Interestingly, traits exhibited higher heritability in queens than workers. This result suggests that genetic variation has a stronger influence on trait variation in the queen caste than the worker caste, which is unexpected because queens typically experience direct selection. Moreover, estimates of heritability for traits were correlated between the castes, indicating that variability in trait size was governed by similar genetic architecture in the two castes. However, we failed to find evidence for a significant relationship between caste dimorphism and caste correlation, as would be expected if trait evolution was constrained by intralocus genetic conflict. Our analyses also uncovered variation in the allometric relationships for traits. These analyses suggested that worker traits were proportionally smaller than queen traits for most traits examined. Overall, our data provide evidence for a strong environmental and moderate genetic basis of trait variation among castes. Moreover, our results suggest that selection previously operated on caste phenotype in this species, and phenotypic variation is now governed primarily by environmental differences.

2.
Insect Sci ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38415498

ABSTRACT

Females of many species are polyandrous. However, polyandry can give rise to conflict among individuals within families. We examined the level of polyandry and paternity skew in the common eastern yellowjacket wasp, Vespula maculifrons, in order to gain a greater understanding of conflict in social insects. We collected 10 colonies of V. maculifrons and genotyped workers and prereproductive queens at highly variable microsatellite markers to assign each to a patriline. Genotypic data revealed evidence of significant paternity skew among patrilines. In addition, we found that patrilines contributed differentially to caste production (worker vs. queen), suggesting an important role for reproductive conflict not previously discovered. We also investigated if patterns of paternity skew and mate number varied over time. However, we found no evidence of changes in levels of polyandry when compared to historical data dating back almost 40 years. Finally, we measured a suite of morphological traits in individuals from the most common and least common patrilines in each colony to test if males that showed highly skewed reproductive success also produced offspring that differed in phenotype. Our data revealed weak correlation between paternity skew and morphological phenotype of offspring sired by different males, suggesting no evidence of evolutionary tradeoffs at the level investigated. Overall, this study is the first to report significant paternity and caste-associated skew in V. maculifrons, and to investigate the phenotypic consequences of skew in a social wasp. Our results suggest that polyandry can have important consequences on the genetic and social structure of insect societies.

3.
J R Soc Interface ; 20(202): 20220597, 2023 05.
Article in English | MEDLINE | ID: mdl-37194494

ABSTRACT

Ants are millimetres in scale yet collectively create metre-scale nests in diverse substrates. To discover principles by which ant collectives self-organize to excavate crowded, narrow tunnels, we studied incipient excavation in small groups of fire ants in quasi-two-dimensional arenas. Excavation rates displayed three stages: initially excavation occurred at a constant rate, followed by a rapid decay, and finally a slower decay scaling in time as t-1/2. We used a cellular automata model to understand such scaling and motivate how rate modulation emerges without global control. In the model, ants estimated their collision frequency with other ants, but otherwise did not communicate. To capture early excavation rates, we introduced the concept of 'agitation'-a tendency of individuals to avoid rest if collisions are frequent. The model reproduced the observed multi-stage excavation dynamics; analysis revealed how parameters affected features of multi-stage progression. Moreover, a scaling argument without ant-ant interactions captures tunnel growth power-law at long times. Our study demonstrates how individual ants may use local collisional cues to achieve functional global self-organization. Such contact-based decisions could be leveraged by other living and non-living collectives to perform tasks in confined and crowded environments.


Subject(s)
Ants , Humans , Animals , Ants/physiology , Cues , Nesting Behavior/physiology , Time Factors
4.
G3 (Bethesda) ; 12(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36226801

ABSTRACT

Many lizard species face extinction due to worldwide climate change. The Guatemalan Beaded Lizard, Heloderma charlesbogerti, is a member of the Family Helodermatidae that may be particularly imperiled; fewer than 600 mature individuals are believed to persist in the wild. In addition, H. charlesbogerti lizards are phenotypically remarkable. They are large in size, charismatically patterned, and possess a venomous bite. Here, we report the draft genome of the Guatemalan Beaded Lizard using DNA from a wild-caught individual. The assembled genome totals 2.31 Gb in length, similar in size to the genomes of related species. Single-copy orthologs were used to produce a novel molecular phylogeny, revealing that the Guatemalan Beaded Lizard falls into a clade with the Asian Glass Lizard (Anguidae) and in close association with the Komodo Dragon (Varanidae) and the Chinese Crocodile Lizard (Shinisauridae). In addition, we identified 31,411 protein-coding genes within the genome. Of the genes identified, we found 504 that evolved with a differential constraint on the branch leading to the Guatemalan Beaded Lizard. Lastly, we identified a decline in the effective population size of the Guatemalan Beaded Lizard approximately 400,000 years ago, followed by a stabilization before starting to dwindle again 60,000 years ago. The results presented here provide important information regarding a highly endangered, venomous reptile that can be used in future conservation, functional genetic, and phylogenetic analyses.


Subject(s)
Lizards , Humans , Animals , Lizards/genetics , Phylogeny , Population Density , Venoms/genetics , Genome
5.
Ecol Evol ; 12(2): e8569, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35169451

ABSTRACT

Many social species show variation in their social structure in response to different environmental conditions. For example, colonies of the yellowjacket wasp Vespula squamosa are typically headed by a single reproductive queen and survive for only a single season. However, in warmer climates, V. squamosa colonies sometimes persist for multiple years and can grow to extremely large size. We used genetic markers to understand patterns of reproduction and recruitment within these perennial colonies. We genotyped V. squamosa workers, pre-reproductive queens, and males from perennial colonies in the southeastern United States at 10 polymorphic microsatellite loci and one mitochondrial DNA locus. We found that V. squamosa from perennial nests were produced by multiple reproductives, in contrast to typical annual colonies. Relatedness of nestmates from perennial colonies was significantly lower than relatedness of nestmates from annual colonies. Our analyses of mitochondrial DNA indicated that most V. squamosa perennial colonies represented semiclosed systems whereby all individuals belonged to a single matriline despite the presence of multiple reproductive females. However, new queens recruited into perennial colonies apparently mated with non-nestmate males. Notably, perennial and annual colonies did not show significant genetic differences, supporting the hypothesis that perennial colony formation represents an instance of social plasticity. Overall, our results indicate that perennial V. squamosa colonies show substantial changes to their social biology compared to typical annual colonies and demonstrate variation in social behaviors in highly social species.

6.
J Hered ; 112(7): 626-634, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34558622

ABSTRACT

Highly social species are successful because they cooperate in obligately integrated societies. We examined temporal genetic variation in the eusocial wasp Vespula maculifrons to gain a greater understanding of evolution in highly social taxa. First, we wished to test if effective population sizes of eusocial species were relatively low due to the reproductive division of labor that characterizes eusocial taxa. We thus estimated the effective population size of V. maculifrons by examining temporal changes in population allele frequencies. We sampled the genetic composition of a V. maculifrons population at 3 separate timepoints spanning a 13-year period. We found that effective population size ranged in the hundreds of individuals, which is similar to estimates in other, non-eusocial taxa. Second, we estimated levels of polyandry in V. maculifrons in different years to determine if queen mating system varied over time. We found no significant change in the number or skew of males mated to queens. In addition, mating skew was not significant within V. maculifrons colonies. Therefore, our data suggest that queen mate number may be subject to stabilizing selection in this taxon. Overall, our study provides novel insight into the selective processes operating in eusocial species by analyzing temporal genetic changes within populations.


Subject(s)
Wasps , Animals , Humans , Male , Microsatellite Repeats , Population Density , Reproduction/genetics , Sexual Behavior, Animal , Social Behavior , Wasps/genetics
7.
Philos Trans R Soc Lond B Biol Sci ; 376(1826): 20200114, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33866804

ABSTRACT

Epigenetic information affects gene function by interacting with chromatin, while not changing the DNA sequence itself. However, it has become apparent that the interactions between epigenetic information and chromatin can, in fact, indirectly lead to DNA mutations and ultimately influence genome evolution. This review evaluates the ways in which epigenetic information affects genome sequence and evolution. We discuss how DNA methylation has strong and pervasive effects on DNA sequence evolution in eukaryotic organisms. We also review how the physical interactions arising from the connections between histone proteins and DNA affect DNA mutation and repair. We then discuss how a variety of epigenetic mechanisms exert substantial effects on genome evolution by suppressing the movement of transposable elements. Finally, we examine how genome expansion through gene duplication is also partially controlled by epigenetic information. Overall, we conclude that epigenetic information has widespread indirect effects on DNA sequences in eukaryotes and represents a potent cause and constraint of genome evolution. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'


Subject(s)
DNA Repair/genetics , DNA/genetics , Epigenesis, Genetic , Evolution, Molecular , Genome , Histones/genetics , Mutation/genetics , Base Sequence , DNA Methylation , Eukaryota/genetics
8.
Mol Biol Evol ; 37(8): 2322-2331, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32243528

ABSTRACT

Gene duplication serves a critical role in evolutionary adaptation by providing genetic raw material to the genome. The evolution of duplicated genes may be influenced by epigenetic processes such as DNA methylation, which affects gene function in some taxa. However, the manner in which DNA methylation affects duplicated genes is not well understood. We studied duplicated genes in the honeybee Apis mellifera, an insect with a highly sophisticated social structure, to investigate whether DNA methylation was associated with gene duplication and genic evolution. We found that levels of gene body methylation were significantly lower in duplicate genes than in single-copy genes, implicating a possible role of DNA methylation in postduplication gene maintenance. Additionally, we discovered associations of gene body methylation with the location, length, and time since divergence of paralogous genes. We also found that divergence in DNA methylation was associated with divergence in gene expression in paralogs, although the relationship was not completely consistent with a direct link between DNA methylation and gene expression. Overall, our results provide further insight into genic methylation and how its association with duplicate genes might facilitate evolutionary processes and adaptation.


Subject(s)
Bees/genetics , DNA Methylation , Evolution, Molecular , Gene Duplication , Animals , Gene Dosage , Gene Expression
9.
Genome Biol ; 21(1): 15, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31969194

ABSTRACT

BACKGROUND: Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. RESULTS: Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. CONCLUSIONS: These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity.


Subject(s)
Arthropods/genetics , Evolution, Molecular , Animals , Arthropods/classification , DNA Methylation , Genetic Speciation , Genetic Variation , Phylogeny
10.
Annu Rev Entomol ; 64: 185-203, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30285490

ABSTRACT

Epigenetic inheritance is fundamentally important to cellular differentiation and developmental plasticity. In this review, we provide an introduction to the field of molecular epigenetics in insects. Epigenetic information is passed across cell divisions through the methylation of DNA, the modification of histone proteins, and the activity of noncoding RNAs. Much of our knowledge of insect epigenetics has been gleaned from a few model species. However, more studies of epigenetic information in traditionally nonmodel taxa will help advance our understanding of the developmental and evolutionary significance of epigenetic inheritance in insects. To this end, we also provide a brief overview of techniques for profiling and perturbing individual facets of the epigenome. Doing so in diverse cellular, developmental, and taxonomic contexts will collectively help shed new light on how genome regulation results in the generation of diversity in insect form and function.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Histone Code , Insecta/genetics , RNA, Untranslated/physiology , Animals , Phenotype
11.
Zoo Biol ; 37(3): 171-182, 2018 May.
Article in English | MEDLINE | ID: mdl-29740857

ABSTRACT

The naked mole rat, Heterocephalus glaber, is a highly unusual mammal that displays a complex social system similar to that found in eusocial insects. Colonies of H. glaber are commonly maintained in zoo collections because they represent fascinating educational exhibits for the public. However, little is known about the genetic structure or sex ratio of captive populations of H. glaber. In this study, we developed a set of microsatellite markers to examine genetic variation in three captive zoo populations of H. glaber. We also studied sex ratio of these captive populations. Our goal was to determine levels of genetic variation within, and genetic differences between, captive populations of H. glaber. Overall, we found modest levels of genetic variation in zoo populations. We also uncovered little evidence for inbreeding within the captive populations. However, zoo populations did differ genetically, which may reflect the isolation of captive naked mole rat colonies. Finally, we found no evidence of biased sex ratios within colonies. Overall, our study documents levels of genetic variation and sex ratios in a captive eusocial mammalian population. Our results may provide insight into how to manage captive populations of H. glaber.


Subject(s)
Genetic Variation , Mole Rats/genetics , Animals , Animals, Zoo , Female , Genotype , Male , Microsatellite Repeats , Mole Rats/physiology , Sex Ratio
12.
Environ Sci Technol ; 52(10): 6009-6022, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29634279

ABSTRACT

Hyalella azteca is a cryptic species complex of epibenthic amphipods of interest to ecotoxicology and evolutionary biology. It is the primary crustacean used in North America for sediment toxicity testing and an emerging model for molecular ecotoxicology. To provide molecular resources for sediment quality assessments and evolutionary studies, we sequenced, assembled, and annotated the genome of the H. azteca U.S. Lab Strain. The genome quality and completeness is comparable with other ecotoxicological model species. Through targeted investigation and use of gene expression data sets of H. azteca exposed to pesticides, metals, and other emerging contaminants, we annotated and characterized the major gene families involved in sequestration, detoxification, oxidative stress, and toxicant response. Our results revealed gene loss related to light sensing, but a large expansion in chemoreceptors, likely underlying sensory shifts necessary in their low light habitats. Gene family expansions were also noted for cytochrome P450 genes, cuticle proteins, ion transporters, and include recent gene duplications in the metal sequestration protein, metallothionein. Mapping of differentially expressed transcripts to the genome significantly increased the ability to functionally annotate toxicant responsive genes. The H. azteca genome will greatly facilitate development of genomic tools for environmental assessments and promote an understanding of how evolution shapes toxicological pathways with implications for environmental and human health.


Subject(s)
Amphipoda , Water Pollutants, Chemical , Animals , Ecotoxicology , Geologic Sediments , North America , Toxicity Tests
13.
Evolution ; 71(12): 2871-2884, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28875541

ABSTRACT

Gene duplication is an important evolutionary process thought to facilitate the evolution of phenotypic diversity. We investigated if gene duplication was associated with the evolution of phenotypic differences in a highly social insect, the honeybee Apis mellifera. We hypothesized that the genetic redundancy provided by gene duplication could promote the evolution of social and sexual phenotypes associated with advanced societies. We found a positive correlation between sociality and rate of gene duplications across the Apoidea, indicating that gene duplication may be associated with sociality. We also discovered that genes showing biased expression between A. mellifera alternative phenotypes tended to be found more frequently than expected among duplicated genes than singletons. Moreover, duplicated genes had higher levels of caste-, sex-, behavior-, and tissue-biased expression compared to singletons, as expected if gene duplication facilitated phenotypic differentiation. We also found that duplicated genes were maintained in the A. mellifera genome through the processes of conservation, neofunctionalization, and specialization, but not subfunctionalization. Overall, we conclude that gene duplication may have facilitated the evolution of social and sexual phenotypes, as well as tissue differentiation. Thus this study further supports the idea that gene duplication allows species to evolve an increased range of phenotypic diversity.


Subject(s)
Bees/genetics , Evolution, Molecular , Gene Duplication , Selection, Genetic , Animals , Bees/classification , Bees/growth & development , Gene Expression Regulation, Developmental , Genome , Phenotype
14.
Genome Biol ; 17(1): 227, 2016 11 11.
Article in English | MEDLINE | ID: mdl-27832824

ABSTRACT

BACKGROUND: Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. RESULTS: The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. CONCLUSIONS: Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants.


Subject(s)
Coleoptera/genetics , Genome, Insect/genetics , Sequence Analysis, DNA , Animals , Coleoptera/pathogenicity , Evolution, Molecular , Gene Transfer, Horizontal , Host-Parasite Interactions/genetics , Introduced Species , Larva , Trees/parasitology
15.
Sci Rep ; 6: 37110, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27848993

ABSTRACT

Epigenetic inheritance plays an important role in mediating alternative phenotype in highly social species. In order to gain a greater understanding of epigenetic effects in societies, we investigated DNA methylation in the termite Zootermopsis nevadensis. Termites are the most ancient social insects, and developmentally distinct from highly-studied, hymenopteran social insects. We used replicated bisulfite-sequencing to investigate patterns of DNA methylation in both sexes and among castes of Z. nevadensis. We discovered that Z. nevadensis displayed some of the highest levels of DNA methylation found in insects. We also found strong differences in methylation between castes. Methylated genes tended to be uniformly and highly expressed demonstrating the antiquity of associations between intragenic methylation and gene expression. Differentially methylated genes were more likely to be alternatively spliced than not differentially methylated genes, and possessed considerable enrichment for development-associated functions. We further observed strong overrepresentation of multiple transcription factor binding sites and miRNA profiles associated with differential methylation, providing new insights into the possible function of DNA methylation. Overall, our results show that DNA methylation is widespread and associated with caste differences in termites. More generally, this study provides insights into the function of DNA methylation and the success of insect societies.


Subject(s)
DNA Methylation/physiology , Gene Expression Regulation/physiology , Genes, Insect/physiology , Isoptera/metabolism , Animals , Female , Isoptera/genetics , Male
16.
G3 (Bethesda) ; 6(2): 357-63, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26637432

ABSTRACT

Epigenetic information is widely appreciated for its role in gene regulation in eukaryotic organisms. However, epigenetic information can also influence genome evolution. Here, we investigate the effects of epigenetic information on gene sequence evolution in two disparate insects: the fly Drosophila melanogaster, which lacks substantial DNA methylation, and the ant Camponotus floridanus, which possesses a functional DNA methylation system. We found that DNA methylation was positively correlated with the synonymous substitution rate in C. floridanus, suggesting a key effect of DNA methylation on patterns of gene evolution. However, our data suggest the link between DNA methylation and elevated rates of synonymous substitution was explained, in large part, by the targeting of DNA methylation to genes with signatures of transcriptionally active chromatin, rather than the mutational effect of DNA methylation itself. This phenomenon may be explained by an elevated mutation rate for genes residing in transcriptionally active chromatin, or by increased structural constraints on genes in inactive chromatin. This result highlights the importance of chromatin structure as the primary epigenetic driver of genome evolution in insects. Overall, our study demonstrates how different epigenetic systems contribute to variation in the rates of coding sequence evolution.


Subject(s)
Chromatin/genetics , DNA Methylation , Epigenesis, Genetic , Evolution, Molecular , Insecta/genetics , Animals , Chromatin/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression Profiling , Genome, Insect , Genomics/methods , Histones/metabolism , Insecta/metabolism , Open Reading Frames
17.
Soft Matter ; 11(33): 6552-61, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26106969

ABSTRACT

The collective movement of animal groups often occurs in confined spaces. As animal groups are challenged to move at high density, their mobility dynamics may resemble the flow of densely packed non-living soft materials such as colloids, grains, or polymers. However, unlike inert soft-materials, self-propelled collective living systems often display social interactions whose influence on collective mobility are only now being explored. In this paper, we study the mobility of bi-directional traffic flow in a social insect (the fire ant Solenopsis invicta) as we vary the diameter of confining foraging tunnels. In all tunnel diameters, we observe the emergence of spatially heterogeneous regions of fast and slow traffic that are induced through two phenomena: physical obstruction, arising from the inability of individual ants to interpenetrate, and time-delay resulting from social interaction in which ants stop to briefly antennate. Density correlation functions reveal that the relaxation dynamics of high density traffic fluctuations scale linearly with fluctuation size and are sensitive to tunnel diameter. We separate the roles of physical obstruction and social interactions in traffic flow using cellular automata based simulation. Social interaction between ants is modeled as a dwell time (Tint) over which interacting ants remain stationary in the tunnel. Investigation over a range of densities and Tint reveals that the slowing dynamics of collective motion in social living systems are consistent with dynamics near a fragile glass transition in inert soft-matter systems. In particular, flow is relatively insensitive to density until a critical density is reached. As social interaction affinity is increased (increasing Tint) traffic dynamics change and resemble a strong glass transition. Thus, social interactions play an important role in the mobility of collective living systems at high density. Our experiments and model demonstrate that the concepts of soft-matter physics aid understanding of the mobility of collective living systems, and motivate further inquiry into the dynamics of densely confined social living systems.


Subject(s)
Ants/physiology , Models, Biological , Animals , Computer Simulation , Equipment Design , Glass , Movement , Spatio-Temporal Analysis
18.
J Exp Biol ; 218(Pt 9): 1295-305, 2015 May.
Article in English | MEDLINE | ID: mdl-25954041

ABSTRACT

Collective construction of topologically complex structures is one of the triumphs of social behavior. For example, many ant species construct underground nests composed of networks of tunnels and chambers. Excavation by these 'superorganisms' depends on the biomechanics of substrate manipulation, the interaction of individuals, and media stability and cohesiveness. To discover principles of robust social excavation, we used X-ray computed tomography to monitor the growth in three dimensions of nests built by groups of fire ants (Solenopsis invicta) in laboratory substrates composed of silica particles, manipulating two substrate properties: particle size and gravimetric moisture content. Ants were capable of nest construction in all substrates tested other than completely dry or fully saturated; for a given particle size, nest volume was relatively insensitive to moisture content. Tunnels were deepest at intermediate moisture content and the maximum tunnel depth correlated with measured yield force on small rod-shaped intruders (a proxy for cohesive strength). This implies that increased cohesive strength allowed creation of tunnels that were resistant to perturbation but did not decrease individual excavation ability. Ants used two distinct behaviors to create pellets composed of wetted particles, depending on substrate composition. However, despite the ability to create larger stable pellets in more cohesive substrates, pellet sizes were similar across all conditions. We posit that this pellet size balances the individual's load-carrying ability with the need to carry this pellet through confined crowded tunnels. We conclude that effective excavation of similarly shaped nests can occur in a diversity of substrates through sophisticated digging behaviors by individuals which accommodate both differing substrate properties and the need to work within the collective.


Subject(s)
Ants/physiology , Nesting Behavior , Animals , Biomechanical Phenomena , Georgia , Introduced Species , Social Behavior , Tomography, X-Ray Computed
19.
Science ; 348(6239): 1139-43, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25977371

ABSTRACT

The evolution of eusociality is one of the major transitions in evolution, but the underlying genomic changes are unknown. We compared the genomes of 10 bee species that vary in social complexity, representing multiple independent transitions in social evolution, and report three major findings. First, many important genes show evidence of neutral evolution as a consequence of relaxed selection with increasing social complexity. Second, there is no single road map to eusociality; independent evolutionary transitions in sociality have independent genetic underpinnings. Third, though clearly independent in detail, these transitions do have similar general features, including an increase in constrained protein evolution accompanied by increases in the potential for gene regulation and decreases in diversity and abundance of transposable elements. Eusociality may arise through different mechanisms each time, but would likely always involve an increase in the complexity of gene networks.


Subject(s)
Bees/genetics , Evolution, Molecular , Genetic Drift , Social Behavior , Transcriptome , Amino-Acid N-Acetyltransferase , Animals , Bees/classification , DNA Transposable Elements , Gene Expression Regulation , Gene Regulatory Networks , Genome, Insect/genetics , Phylogeny , Selection, Genetic , Transcription Factors/chemistry , Transcription Factors/genetics
20.
Genome Biol Evol ; 7(4): 931-42, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25724207

ABSTRACT

Epigenetic information regulates gene function and has important effects on development in eukaryotic organisms. DNA methylation, one such form of epigenetic information, has been implicated in the regulation of gene function in diverse metazoan taxa. In insects, DNA methylation has been shown to play a role in the regulation of gene expression and splicing. However, the functional basis for this role remains relatively poorly understood, and other epigenetic systems likely interact with DNA methylation to affect gene expression. We investigated associations between DNA methylation and histone modifications in the genome of the ant Camponotus floridanus in order to provide insight into how different epigenetic systems interact to affect gene function. We found that many histone modifications are strongly predictive of DNA methylation levels in genes, and that these epigenetic signals are more predictive of gene expression when considered together than when considered independently. We also found that peaks of DNA methylation are associated with the spatial organization of chromatin within active genes. Finally, we compared patterns of differential histone modification enrichment to patterns of differential DNA methylation to reveal that several histone modifications significantly covary with DNA methylation between C. floridanus phenotypes. As the first genomic comparison of DNA methylation to histone modifications within a single insect taxon, our investigation provides new insight into the regulatory significance of DNA methylation.


Subject(s)
Ants/genetics , Chromatin/metabolism , DNA Methylation , Histones/metabolism , Animals , Ants/metabolism , Chromatin/chemistry , Gene Expression , Genome, Insect
SELECTION OF CITATIONS
SEARCH DETAIL
...